www.haleyaldrich.com

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT 322 LANDFILL TECUMSEH ENERGY CENTER TECUMSEH, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-041 January 2022

Table of Contents

1.	Introduction						
	1.1	40 CFF	R § 257.90(E)(6) SUMMARY	1			
		1.1.1	40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1			
		1.1.2	40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1			
		1.1.3	40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	1			
		1.1.4	40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2			
		1.1.5	40 CFR § 257.90(e)(6)(v) – Selection of Remedy	2			
		1.1.6	40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3			
2.	40 C	CFR § 25	57.90 Applicability	4			
	2.1	40 CFF	R § 257.90(A)	4			
	2.2	40 CFF	R § 257.90(E) – SUMMARY	4			
		2.2.1	Status of the Groundwater Monitoring Program	4			
		2.2.2	Key Actions Completed	4			
		2.2.3	Problems Encountered	5			
		2.2.4	Actions to Resolve Problems	5			
		2.2.5	Project Key Activities for Upcoming Year	5			
	2.3	40 CFF	R § 257.90(E) – INFORMATION	5			
		2.3.1	40 CFR § 257.90(e)(1)	6			
		2.3.2	40 CFR § 257.90(e)(2) – Monitoring System Changes	6			
		2.3.3	40 CFR § 257.90(e)(3) – Summary of Sampling Events	6			
		2.3.4	40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	6			
		2.3.5	40 CFR § 257.90(e)(5) – Other Requirements	6			

Revision No.	Date	Notes

List of Tables

Table No.	Title
I	Summary of Analytical Results – 2021 Assessment Monitoring
II	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – September 2020 and March 2021 Sampling Events

List of Figures

Figure No.	Title
1	322 Landfill Monitoring Well Location Map
2	322 Landfill Groundwater Potentiometric Elevation Contour Map – March 8, 2021
3	322 Landfill Groundwater Potentiometric Elevation Contour Map – June 7, 2021
4	322 Landfill Groundwater Potentiometric Elevation Contour Map – September 13, 2021

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Tecumseh Energy Center (TEC) 322 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2021) and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the TEC 322 Landfill is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Kansas License No.: Title: Company:

Mark Nicholls Professional Geologist No. 881 Technical Expert 2 Haley & Aldrich, Inc.

1. Introduction

This 2021 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the 322 Landfill at the Tecumseh Energy Center (TEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the TEC 322 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2020) and documents compliance with the Rule. The specific requirements for the annual report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(E)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2021), the 322 Landfill was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2021), the 322 Landfill was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a)

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

The 322 Landfill is operating under an assessment monitoring program; therefore, no statistical evaluations were completed on appendix III constituents in 2021.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b)

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on July 17, 2018 for the 322 Landfill with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The 322 Landfill remained in assessment monitoring in 2021.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

No statistically significant levels were identified above the groundwater protection standard for those constituents listed in appendix IV to this part in 2021 for the 322 Landfill.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated in 2021 for this unit. The 322 Landfill remained in assessment monitoring during 2021.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the 322 Landfill in 2021; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated in 2021 for this unit. The 322 Landfill remained in assessment monitoring during 2021.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The 322 Landfill remains in assessment monitoring, and no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required in 2021.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the TEC 322 Landfill. The 322 Landfill is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the 322 Landfill as required by the Rule. Groundwater sampling and analysis was conducted in accordance with requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2021.

2.2.1 Status of the Groundwater Monitoring Program

The 322 Landfill remained in the assessment monitoring program during 2021.

2.2.2 Key Actions Completed

The 2020 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2021. Statistical evaluation was completed in January 2021 on analytical data from the September 2020 semi-annual assessment monitoring sampling event.

A semi-annual assessment monitoring sampling event was completed in March 2021 for detected appendix IV constituents identified from the June 2020 annual assessment monitoring sampling event. Statistical evaluation was completed in July 2021 on analytical data from the March 2021 semi-annual assessment monitoring sampling event.

An annual assessment monitoring sampling event was completed in June 2021 to identify detected appendix IV constituents for subsequent semi-annual sampling events in September 2021 and planned for March 2022. Semi-annual assessment monitoring sampling was completed in September 2021 for detected appendix IV constituents identified during the June 2021 annual monitoring event. Statistical evaluation of the results from the September 2021 semi-annual assessment monitoring sampling event are due to be completed in January 2022 and will be reported in the next annual report.

2.2.3 Problems Encountered

One problem encountered during groundwater monitoring activities in 2020 consisted of laboratory analytical errors that required the laboratory to reanalyze select analytical results. Mercury was reanalyzed for all monitoring wells in the June 2021 annual assessment monitoring sampling event due to suspected erroneous analytical results. This was the only issue that needed to be addressed at the 322 Landfill in 2021.

2.2.4 Actions to Resolve Problems

The resolution to problems encountered in 2021 included additional laboratory analyses as described above. The analytical results were revised accordingly. No other problems were encountered at the 322 Landfill in 2021; therefore, no actions to resolve problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2022 include the completion of the 2021 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual assessment monitoring analytical data collected in September 2021, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the 322 Landfill is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned during 2021.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), three independent assessment monitoring samples from each background and downgradient monitoring well were collected in 2021. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the 322 Landfill is presented in Table I of this report. Groundwater potentiometric elevation contour maps associated with each groundwater monitoring sampling event in 2021 are provided in Figures 2 through 4.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on July 17, 2018 with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The 322 Landfill remained in assessment monitoring during 2021.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed in calendar year 2021.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternate source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since July 17, 2018. Three rounds of assessment monitoring sampling were completed in 2021. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected appendix IV constituents for the 322 Landfill are included in Table II. The background concentrations and groundwater protection standards provided in Table II. The background statistical evaluations completed in 2021 for September 2020 and March 2021 semi-annual assessment monitoring sampling events.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring alternate source demonstration or certification was required in 2021. The 322 Landfill remained in assessment monitoring during 2021.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring of corrective measures was required to be initiated in 2021; therefore, no demonstration or certification is applicable for this unit.

TABLES

TABLE ISUMMARY OF ANALYTICAL RESULTS - 2021 ASSESSMENT MONITORINGEVERGY KANSAS CENTRAL, INC.TECUMSEH ENERGY CENTER322 ASH LANDFILLTECUMSEH, KANSAS

Location	Upgradient			Downgradient				Downgradient							
Location		MW-4		MW-1			MW-5				MW-6				
Measure Point (TOC)		936.48				904.65				ç	16.18			911.28	
Sample Name	MW-4-030821	MW-4-060721	MW-4-091321	MW-1-030821	DUP-322LF-030821	MW-1-060721	DUP-322LF-060721	MW-1-091321	MW-5-030821	MW-5-060721	MW-5-091321	TEC-322LF-DUP-091321	MW-6-030821	MW-6-060721	MW-6-091321
Sample Date	3/8/2021	06/07/2021	9/13/2021	3/8/2021	3/8/2021	06/07/2021	06/07/2021	9/13/2021	3/8/2021	06/07/2021	9/13/2021	9/13/2021	3/8/2021	06/07/2021	9/13/2021
Final Lab Report Date	3/17/2021	6/16/2021	10/29/2021	3/17/2021	3/17/2021	6/16/2021	6/16/2021	10/29/2021	3/17/2021	6/16/2021	10/29/2021	10/29/2021	3/17/2021	6/16/2021	10/29/2021
Final Lab Report Revision Date	N/A	7/15/2021	NA	N/A	N/A	7/15/2021	7/15/2021	NA	N/A	7/15/2021	NA	NA	N/A	7/15/2021	NA
Final Radiation Lab Report Date	N/A	7/6/2021	NA	N/A	N/A	7/6/2021	7/6/2021	NA	N/A	7/6/2021	NA	NA	N/A	7/6/2021	NA
Final Radiation Lab Report Revision Date	N/A	NA	NA	N/A	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	NA
Lab Data Reviewed and Validated	4/16/2021	8/2/2021	11/14/2021	4/16/2021	4/16/2021	8/2/2021	8/2/2021	11/14/2021	4/16/2021	8/2/2021	11/14/2021	11/14/2021	4/16/2021	8/2/2021	11/14/2021
Depth to Water (ft btoc)	4.43	4.18	5.03	4.45	-	4.22	-	4.78	6.47	6.38	7.04	-	8.75	8.42	8.81
Temperature (Deg C)	12.53	16.81	22.03	10.39	-	13.85	-	20.86	13.96	19.99	20.76	-	12.85	15.91	19.79
Conductivity, Field (µS/cm)	1590	1622	1580	1400	-	1260	-	1220	2110	1930	1710	-	2080	1990	196
Turbidity, Field (NTU)	0.0	0.0	0.0	3.3	-	0.0	-	0.0	0.0	0.0	2.1	-	0.0	0.0	14
pH, Field (su)	7.14	6.90	7.33	7.21	-	6.83	-	7.36	6.96	6.75	7.33	-	7.22	6.45	7.36
Boron, Total (mg/L)	< 0.10	-	< 0.10	0.46	0.49	-	-	< 0.10	1.0	-	0.64	0.61	0.67	-	0.62
Calcium, Total (mg/L)	188	-	156	177	187	-	-	154	360	-	240	232	313	-	292
Chloride (mg/L)	244	-	232	24.8	24.7	-	-	50.7	28.8	-	44.1	44.9	55.2	-	55.9
Fluoride (mg/L)	< 0.20	< 0.20	0.25	< 0.20	0.33	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.39	0.39	< 0.20	< 0.20	0.56
Sulfate (mg/L)	171	-	157	404	408	-	-	353	1050	-	784	676	874	-	932
pH (lab) (su)	6.8	-	7.2	6.8	7.0	-	-	7.0	6.8	-	7.4	6.8	6.9	-	7.0
TDS (mg/L)	1110	-	1060	1030	1010	-	-	889	1890	-	1490	1410	1650	-	1590
Antimony, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-
Arsenic, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	0.0013	0.0013	< 0.0020	-	< 0.0010	< 0.0010	< 0.0010	-	< 0.0010	< 0.0010
Barium, Total (mg/L)	0.095	0.098	0.10	0.091	0.095	0.087	0.083	0.062	0.017	0.019	0.026	0.024	0.018	0.018	0.017
Beryllium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-
Cadmium, Total (mg/L)	-	< 0.00050	-	-	-	< 0.00050	< 0.00050	-	-	< 0.00050	-	-	-	< 0.00050	-
Chromium, Total (mg/L)	-	< 0.0050	-	-	-	< 0.0050	< 0.0050	-	-	< 0.0050	-	-	-	< 0.0050	-
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0014	0.0014	0.0032	0.0015	0.0018	0.0019	0.0019	0.0023	0.0022	0.0029
Lead, Total (mg/L)	-	< 0.010	-	-	-	< 0.010	< 0.010	-	-	< 0.010	-	-	-	< 0.010	-
Lithium, Total (mg/L)	< 0.010	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	0.010	< 0.010	-	-	0.011	< 0.010	-
Molybdenum, Total (mg/L)	< 0.0010	< 0.0010	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	-	< 0.0010	< 0.0010	-	-	< 0.0010	< 0.0010	-
Selenium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-
Thallium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-
Mercury, Total (mg/L)	-	< 0.00020	<0.00020	-	-	< 0.00020	< 0.00020	<0.00020	-	< 0.00020	<0.00020	<0.00020	-	< 0.00020	<0.00020
Radium-226 & 228 (pCi/L)	-	1.55 ± 0.744 (0.896)	1.70 ± 1.05 (1.85)	-	-	0.434 ± 0.463 (0.758)	0.631 ± 0.525 (0.818)	0.624 ± 0.732 (1.52)	-	0.252 ± 0.483 (0.738)	1.32 ± 0.887 (1.55)	1.15 ± 1.00 (1.94)	-	0.907 ± 0.555 (0.802)	0.206 ± 0.731 (1.75)

Notes and Abbreviations:

Bold value: Detection above laboratory reporting limit or minimum detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC.

Data presented in this table were verified against the laboratory and validation reports.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit

TDS = total dissolved solids

TOC = top of casing

TABLE IIASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPSSEPTEMBER 2020 AND MARCH 2021 SAMPLING EVENTSTECUMSEH ENERGY CENTER322 LANDFILLTECUMSEH, KANSAS

Well #	Background Value ¹	GWPS						
C	CR Appendix-IV Barium, Total (mg/	L)						
MW-4 (upgradient)	0.137	NA						
MW-1		2						
MW-5		2						
MW-6		2						
CCR Appendix-IV Cobalt, Total (mg/L)								
MW-4 (upgradient)	0.001	NA						
MW-1		0.006						
MW-5		0.006						
MW-6		0.006						
C	CR Appendix-IV Fluoride, Total (mg,	/L)						
MW-4 (upgradient)	0.350	NA						
MW-1		4.0						
MW-5		4.0						
MW-6		4.0						
C	CR Appendix-IV Lithium, Total (mg/	′L)						
MW-4 (upgradient)	0.010	NA						
MW-1		0.040						
MW-5		0.040						
MW-6		0.040						
CCR	Appendix-IV: Molybdenum, Total (r	ng/L)						
MW-4 (upgradient)	0.001 ²	NA						
MW-1		0.100						
MW-5		0.100						
MW-6		0.100						

Notes and Abbreviations:

¹ Based on background data collected from 08/17/2016 through 03/08/2020, unless otherwise noted.

² Based on background data collected from 08/17/2016 through 09/16/2020.

CCR = Coal Combustion Residuals

GWPS = Groundwater Protection Standard

mg/L = milligrams per Liter

NA = Not Applicable

pCi/L = picoCuries per Liter

FIGURES

LEGEND

MONITORING WELL

PIEZOMETER OBSERVATION ONLY

322 LANDFILL

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 4. AERIAL IMAGERY SOURCE: ESRI, NOVEMBER 7, 2019

600

300 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. TECUMSEH ENERGY CENTER TECUMSEH, KANSAS

322 LANDFILL MONITORING WELL LOCATION MAP

>evergy JANUARY 2022

FIGURE 1

ID
WELL NAME AND GROUNDWATER ELEVATION, (FEET AMSL) JUNE 2021
MONITORING WELL
PIEZOMETER OBSERVATION ONLY
ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 2-FT INTERVAL (AMSL)
INFERRED GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR
GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
322 LANDFILL

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 07 JUNE 2021.

3. AMSL = ABOVE MEAN SEA LEVEL

4. THE APPROXIMATE GROUNDWATER FLOW RATE WAS CALCULATED USING HYDRAULIC CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED IN APRIL 2016.

5. AERIAL IMAGERY SOURCE: ESRI, 7 NOVEMBER 2019

LEGEN	ID
MW-1 900.47	WELL NAME AND GROUNDWATER ELEVATION, (FEET AMSL) SEPTEMBER 2021
•	MONITORING WELL
-	PIEZOMETER OBSERVATION ONLY
	ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 2-FT INTERVAL (AMSL)
	INFERRED GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR
	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	322 LANDFILL

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 13 SEPTEMBER 2021.

3. AMSL = ABOVE MEAN SEA LEVEL

4. THE APPROXIMATE GROUNDWATER FLOW RATE WAS CALCULATED USING HYDRAULIC CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED IN APRIL 2016.

5. AERIAL IMAGERY SOURCE: ESRI, 7 NOVEMBER 2019

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

March 1, 2022 Project No. 0204993-000

TO:	Evergy Kansas Central, Inc.
	Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc.
	Steven F. Putrich, P.E., Principal Consultant – Engineering Principal
	Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	2021 Annual Groundwater Monitoring and Corrective Action Report Addendum
	Evergy Kansas Central, Inc. (Evergy)
	322 Landfill
	Tecumseh Energy Center – Tecumseh, Kansas

The 322 Landfill at the Evergy's Tecumseh Energy Center (TEC) is subject to the groundwater monitoring and corrective action requirements described under Title 40 Code of Federal Regulations (40 CFR) § 257.90 through § 257.98 (Rule). An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting the activities completed in 2021 for the 322 Landfill was completed and placed in the facilities operating record on January 31, 2022, as required by the Rule. The Annual Groundwater Monitoring and Corrective Action Report (annual groundwater report) contained the specific information listed in § 257.90(e).

This report addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in § 257.90(e), the USEPA indicated in their comments that the GWMCA Report should contain:

- Results of laboratory analysis of groundwater or other environmental media samples for the presence of constituents of Appendices III and IV to 40 C.F.R. part 257 (or of other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy);
- Required statistical analyses performed on those [laboratory analysis] results;
- Measured groundwater elevations; and,
- Calculated groundwater flow rate and direction.

While this information is not specifically referred to in the in 257.90(e) of the Rule for inclusion in the GWMCA Reports, it has been routinely collected and maintained in Evergy's files, and is being provided in the attachments to this addendum. The 2021 GWMCA Report does include a "Groundwater Potentiometric Elevation Contour Map" for each of the 2021 sampling events as Figures 2, 3, and 4. In those figures, the measured groundwater elevations for each well are listed along with the calculated

Evergy Kansas Central, Inc. March 1, 2022 Page 2

groundwater flow rate and direction. Those maps have not been duplicated in this addendum and can be referenced in the original GWMCA Report dated January 31, 2022.

The attachments to this addendum are as follows providing the additional information:

Attachment 1 – Laboratory Analytical Reports

 Includes laboratory data packages with supporting information, such as, case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the sampling events completed in March 2021, June 2021, and September 2021 are provided.

Attachment 2 – Statistical Analyses

- Includes a discussion of the statistical analyses utilized along with a table summarizing the statistical outputs (e.g., frequency of detection, maximum detection, variance, standard deviation, coefficient of variance, outlier tests, trends, upper and lower confidence limits, and comparison against Groundwater Protection Standards), and supporting backup for statistical analyses completed in 2021. Statistical analyses completed in 2021 included:
 - January 2021 statistical analyses for data obtained in the September 2020 sampling event; and,
 - July 2021 statistical analyses for data obtained in the March 2021 sampling event.

ATTACHMENT 1

Laboratory Analytical Reports

ATTACHMENT 1-1

March 2021 Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 17, 2021

Andrew Hare Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR Pace Project No.: 60363071

Dear Andrew Hare:

Enclosed are the analytical results for sample(s) received by the laboratory on March 08, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Laura Hines, Evergy, Inc. Heath Horyna, Evergy, Inc.
Jake Humphrey, Evergy, Inc.
Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc.
Jared Morrison, Evergy, Inc.
Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc.

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60363071001	MW-1-030821	Water	03/08/21 10:55	03/08/21 16:45
60363071002	MW-4-030821	Water	03/08/21 13:50	03/08/21 16:45
60363071003	MW-5-030821	Water	03/08/21 12:50	03/08/21 16:45
60363071004	MW-6-030821	Water	03/08/21 11:50	03/08/21 16:45
60363071005	DUP-322LF-030821	Water	03/08/21 10:55	03/08/21 16:45

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60363071001	MW-1-030821	EPA 200.7	TDS	3	PASI-K
		EPA 6010	TDS	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	LDB	1	PASI-K
		EPA 300.0	AJS	3	PASI-K
60363071002	MW-4-030821	EPA 200.7	TDS	3	PASI-K
		EPA 6010	TDS	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	LDB	1	PASI-K
		EPA 300.0	AJS	3	PASI-K
60363071003	MW-5-030821	EPA 200.7	TDS	3	PASI-K
		EPA 6010	TDS	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	LDB	1	PASI-K
		EPA 300.0	AJS	3	PASI-K
60363071004	MW-6-030821	EPA 200.7	TDS	3	PASI-K
		EPA 6010	TDS	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	LDB	1	PASI-K
		EPA 300.0	AJS	3	PASI-K
60363071005	DUP-322LF-030821	EPA 200.7	TDS	3	PASI-K
		EPA 6010	TDS	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	LDB	1	PASI-K
		EPA 300.0	AJS	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 707888

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60362592001,60362965003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2850769)
 - Calcium

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: EPA 6010

Description:6010 MET ICPClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-322LF-030821 (Lab ID: 60363071005)
- MW-1-030821 (Lab ID: 60363071001)
- MW-4-030821 (Lab ID: 60363071002)
- MW-5-030821 (Lab ID: 60363071003)
- MW-6-030821 (Lab ID: 60363071004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:March 17, 2021

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 707847

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60360745002,60362783002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 2850670)
 - Fluoride
 - MSD (Lab ID: 2850671)
 - Chloride
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Sample: MW-1-030821	Lab ID: 603	63071001	Collected: 03/08/2	1 10:5	5 Received: 03	/08/21 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Meth	nod: El	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.091	mg/L	0.0050	1	03/10/21 16:37	03/16/21 14:56	7440-39-3	
Boron, Total Recoverable	0.46	mg/L	0.10	1	03/10/21 16:37	03/16/21 14:56	7440-42-8	
Calcium, Total Recoverable	177	mg/L	0.20	1	03/10/21 16:37	03/16/21 14:56	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EF	PA 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	03/12/21 09:44	03/15/21 18:03	7439-93-2	
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:07	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:07	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1030	mg/L	10.0	1		03/12/21 15:23		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	6.8	Std. Units	0.10	1		03/15/21 07:55		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	24.8	mg/L	5.0	5		03/11/21 18:07	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/12/21 18:00	16984-48-8	
Sulfate	404	mg/L	50.0	50		03/11/21 18:22	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Sample: MW-4-030821	Lab ID: 603	63071002	Collected: 03/08/2	3/08/21 13:50 Received: 03/08/21 16:45 Matrix: Water					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: El	PA 200.7				
	Pace Analytica	al Services -	Kansas City						
Barium, Total Recoverable	0.095	mg/L	0.0050	1	03/10/21 16:37	03/16/21 14:58	7440-39-3		
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/10/21 16:37	03/16/21 14:58	7440-42-8		
Calcium, Total Recoverable	188	mg/L	0.20	1	03/10/21 16:37	03/16/21 14:58	7440-70-2		
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP	PA 3010				
	Pace Analytica	al Services -	Kansas City						
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	03/12/21 09:44	03/15/21 18:06	7439-93-2		
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8				
	Pace Analytica	al Services -	Kansas City						
Cobalt, Total Recoverable	<0.0010	ma/L	0.0010	1	03/11/21 16:30	03/17/21 12:17	7440-48-4		
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:17	7439-98-7		
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C						
	Pace Analytica	al Services -	Kansas City						
Total Dissolved Solids	1110	mg/L	13.3	1		03/12/21 15:23			
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B						
	Pace Analytica	al Services -	Kansas City						
pH at 25 Degrees C	6.8	Std. Units	0.10	1		03/15/21 07:57		H6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
	Pace Analytica	al Services -	Kansas City						
Chloride	244	mg/L	20.0	20		03/10/21 18:39	16887-00-6		
Fluoride	<0.20	mg/L	0.20	1		03/11/21 19:05	16984-48-8		
Sulfate	171	mg/L	20.0	20		03/10/21 18:39	14808-79-8		

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Sample: MW-5-030821	Lab ID: 603	863071003	Collected: 03/08/2	1 12:50	0 Received: 03	08/21 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	nod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.017	mg/L	0.0050	1	03/10/21 16:37	03/16/21 15:01	7440-39-3	
Boron, Total Recoverable	1.0	mg/L	0.10	1	03/10/21 16:37	03/16/21 15:01	7440-42-8	
Calcium, Total Recoverable	360	mg/L	0.20	1	03/10/21 16:37	03/16/21 15:01	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EP	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.010	mg/L	0.010	1	03/12/21 09:44	03/15/21 18:22	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	nod: El	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:20	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:20	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	OC					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1890	mg/L	20.0	1		03/12/21 15:23		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	6.8	Std. Units	0.10	1		03/15/21 07:58		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	28.8	mg/L	5.0	5		03/11/21 19:33	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/11/21 19:19	16984-48-8	
Sulfate	1050	mg/L	100	100		03/11/21 19:48	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Sample: MW-6-030821	Lab ID: 603	63071004	Collected: 03/08/2	1 11:50) Received: 03	08/21 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	nod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	03/10/21 16:37	03/16/21 15:03	7440-39-3	
Boron, Total Recoverable	0.67	mg/L	0.10	1	03/10/21 16:37	03/16/21 15:03	7440-42-8	
Calcium, Total Recoverable	313	mg/L	0.20	1	03/10/21 16:37	03/16/21 15:03	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EP	PA 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.011	mg/L	0.010	1	03/12/21 09:44	03/15/21 18:25	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	nod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0023	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:22	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:22	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1650	mg/L	20.0	1		03/12/21 15:24		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	6.9	Std. Units	0.10	1		03/15/21 07:59		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	55.2	mg/L	5.0	5		03/11/21 20:16	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/11/21 20:02	16984-48-8	
Sulfate	874	mg/L	100	100		03/11/21 20:31	14808-79-8	

Project: TEC 322 LANDFILL CCR

•		
Pace Project No.:	60363071	

Sample: DUP-322LF-030821	Lab ID: 603	863071005	Collected: 03/08/2	1 10:5	5 Received: 03	3/08/21 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.095	mg/L	0.0050	1	03/10/21 16:37	03/16/21 15:06	7440-39-3	
Boron, Total Recoverable	0.49	mg/L	0.10	1	03/10/21 16:37	03/16/21 15:06	7440-42-8	
Calcium, Total Recoverable	187	mg/L	0.20	1	03/10/21 16:37	03/16/21 15:06	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	od: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	03/12/21 09:44	03/15/21 18:28	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:25	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	03/11/21 16:30	03/17/21 12:25	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1010	mg/L	13.3	1		03/12/21 15:24		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	0.10	1		03/15/21 08:00		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	24.7	mg/L	5.0	5		03/11/21 20:59	16887-00-6	
Fluoride	0.33	mg/L	0.20	1		03/11/21 20:45	16984-48-8	
Sulfate	408	mg/L	50.0	50		03/11/21 21:14	14808-79-8	

Project:	TEC 322 LAN	DFILL	CCR										
Pace Project No.:	60363071												
QC Batch:	707888			Anal	ysis Metho	d: I	EPA 200.7						
QC Batch Method:	EPA 200.7			Anal	ysis Descri	ption:	200.7 Meta	als, Total					
				Labo	oratory:	I	Pace Analy	tical Servi	ces - Kansa	as City			
Associated Lab Sar	mples: 60363	07100	1, 6036307100	2, 603630	71003, 603	63071004,	603630710	005					
METHOD BLANK:	2850767				Matrix: W	/ater							
Associated Lab Sar	mples: 60363	07100	1, 6036307100	2, 603630	71003, 603	63071004,	603630710	005					
				Bla	nk	Reporting							
Parar	meter		Units	Res	sult	Limit	Ana	lyzed	Qualifier	rs			
Barium			mg/L	<	:0.0050	0.005	0 03/16/2	21 13:53					
Boron			mg/L		<0.10	0.1	0 03/16/2	21 13:53					
Calcium			mg/L		<0.20	0.2	0 03/16/2	21 13:53					
LABORATORY CO	NTROL SAMPL	E: 2	850768										
				Spike	LC	S	LCS	% F	Rec				
Parar	meter		Units	Conc.	Res	sult	% Rec	Lin	nits	Qualifiers			
Barium			mg/L		1	0.97	ç	97	85-115		_		
Boron			mg/L		1	1.0	10	00	85-115				
Calcium			mg/L		10	9.8	ę	98	85-115				
MATRIX SPIKE & M		DUPLI	CATE: 2850	769		2850770)						
				MS	MSD								
			60362592001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r l	Jnits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium		ng/L	21.1 ug/L	1	1	1.0	0.98	97	7 96	5 70-130	1	20	
Boron	I	ng/L	3980 ug/L	1	1	5.1	5.0	115	5 98	8 70-130	3	20	
Calcium	r	ng/L	283000 ug/L	10	10	300	293	163	3 101	70-130	2	20	M1
			050774										
MATRIA SPIRE SA		2	000771	60361	2065003	Sniko	MS		MS	% Roc			
Para	neter		Units	Re	esult	Conc.	Resul	t '	% Rec	Limits		Quali	fiers
Barium			mg/L		0.063	1		1.0	98	70	-130		
Boron			mg/L		0.44	1		1.5	101	70	-130		
Calcium			mg/L		200	10		208	80	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	TEC 322 LANDFI	LL CCR										
Pace Project No.:	60363071											
QC Batch:	708124		Anal	ysis Metho	d:	EPA 200.8						
QC Batch Method:	EPA 200.8		Analy	ysis Descri	ption:	200.8 MET						
			Labo	oratory:		Pace Analy	tical Servic	es - Kansa	s City			
Associated Lab Sa	mples: 60363071	001, 6036307100	2, 6036307	71003, 603	63071004,	603630710	05					
METHOD BLANK:	2851833			Matrix: W	/ater							
Associated Lab Sa	mples: 60363071	001, 6036307100	2, 6036307	71003, 603	63071004,	603630710	05					
			Blai	nk	Reporting							
Para	meter	Units	Res	ult	Limit	Anal	yzed	Qualifier	s			
Cobalt		ma/L	<	0.0010	0.001	0 03/17/2	1 12:04					
Molybdenum		mg/L	<	0.0010	0.001	0 03/17/2	1 12:04					
LABORATORY CO	NTROL SAMPLE:	2851834	.									
Dava		11-16-	Spike	LC	S	LCS	% R	ec	0			
Para	meter	Units	Conc.	Res	Suit	% Rec			Juaimers			
Cobalt		mg/L	0.0)4	0.038	9	6	85-115				
Molybdenum		mg/L	0.0)4	0.039	9	8	85-115				
MATRIX SPIKE & M	MATRIX SPIKE DUI	PLICATE: 2851	835		2851836	3						
		2001	MS	MSD	2001000	•						
		60363071001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	mg/l	<0.0010	0.04	0.04	0.041	0.042	99	101	70-130	2	20	
Molybdenum	mg/l	<0.0010	0.04	0.04	0.040	0.041	99	100	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LANDFIL	L CCR										
Pace Project No.:	60363071											
QC Batch:	708275		Anal	ysis Metho	od:	EPA 6010						
QC Batch Method:	EPA 3010		Anal	ysis Descr	iption:	6010 MET						
			Labo	oratory:		Pace Analyt	ical Servic	es - Kansa	s City			
Associated Lab Sar	mples: 60363071	001, 6036307100	02, 603630	71003, 603	363071004,	603630710	05					
METHOD BLANK:	2852318			Matrix: V	Vater							
Associated Lab Sar	mples: 60363071	001, 6036307100	2, 603630	71003, 603	363071004,	603630710	05					
			Bla	nk	Reporting							
Parar	neter	Units	Res	sult	Limit	Analy	/zed	Qualifier	S			
Lithium		mg/L		<0.010	0.0	03/15/2	1 17:58					
LABORATORY CO	NTROL SAMPLE:	2852319										
			Spike	L	CS	LCS	% R	ес				
Parar	neter	Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers			
Lithium		mg/L		1	0.94	9,	4 8	30-120		_		
MATRIX SPIKE & N	ATRIX SPIKE DUP	PLICATE: 2852	320		285232	1						
		0000074000	MS	MSD	MC		MC	MOD	0/ D		Mari	
Paramete	r Units	Result	Spike Conc.	Spike Conc.	IVIS Result	Result	MS % Rec	WISD % Rec	% Rec Limits	RPD	iviax RPD	Qual
Lithium		<0.010	1	1	0.95	0.99	95		75-125	3	20	2.341
	-											

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LANDFIL	L CCR						
Pace Project No.:	60363071							
QC Batch:	708388		Analysis Mo	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
			Laboratory	:	Pace Analytica	I Services - Kar	isas City	
Associated Lab Sar	nples: 60363071	001, 6036307100	2, 60363071003,	60363071004,	, 60363071005			
METHOD BLANK:	2852879		Matrix	: Water				
Associated Lab Sar	mples: 60363071	001, 6036307100	2, 60363071003,	60363071004	60363071005			
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	d Qualit	iers	
Total Dissolved Soli	ds	mg/L	<5.0) 5	5.0 03/12/21 1	5:23		
LABORATORY CO	NTROL SAMPLE:	2852880						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Soli	ds	mg/L	1000	1010	101	80-120		
SAMPLE DUPLICA	TE: 2852881							
			60363029002	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Soli	ds	mg/L	550) 50	64	3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR Pace Project No.: 60363071 QC Batch: 708498 Analysis Method: SM 4500-H+B QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH Laboratory: Pace Analytical Services - Kansas City Associated Lab Samples: 60363071001, 60363071002, 60363071003, 60363071004, 60363071005 SAMPLE DUPLICATE: 2853769 60363030003 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.4 pH at 25 Degrees C 7.4 5 H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322	2 LANDFILI	LCCR											
Pace Project No.:	6036307	'1												
QC Batch:	707847	7		Analy	sis Metho	d:	EF	PA 300.0						
QC Batch Method:	EPA 30	0.0		Analy	sis Descri	ption:	30	0.0 IC An	ons					
				Labo	ratory:		Pa	ace Analyt	cal Servic	es - Kans	as City			
Associated Lab Sar	nples:	603630710	01, 6036307100	02, 6036307	1003, 603	63071004	4, 60	3630710)5					
METHOD BLANK:	2850668	}			Matrix: W	ater								
Associated Lab Sar	nples:	603630710	01, 6036307100	2, 6036307	1003, 603	63071004	4, 60	3630710)5					
Parar	neter		Units	Blar Resi	nk ult	Reporting Limit)	Analy	zed	Qualifie	ers			
Chloride			ma/l				1 0	03/10/2	09.38					
Fluoride			mg/L		<0.20	0	20	03/10/2	09:38					
Sulfate			mg/L		<1.0	-	1.0	03/10/2	09:38					
METHOD BLANK:	2854934	ļ			Matrix: W	ater								
Associated Lab Sar	nples:	603630710	01, 6036307100	2, 6036307	1003, 603	63071004	4, 60	3630710)5					
_				Blar	nk	Reporting)			o ""				
Paran	neter		Units	Resu	ult	Limit		Analy	zed	Qualifie	ers			
Chloride			mg/L		<1.0		1.0	03/11/21	10:44					
Fluoride			mg/L		<0.20	0	.20	03/11/21	10:44					
Sulfate			mg/L		<1.0		1.0	03/11/21	10:44					
LABORATORY COI		AMPLE:	2850669											
				Spike	LC	s		LCS	% F	Rec				
Paran	neter		Units	Conc.	Res	sult	c ,	% Rec	Lim	iits	Qualifiers			
Chloride			mg/L		5	4.8		95	5	90-110				
Fluoride			mg/L	2.	5	2.4		95	5	90-110				
Sulfate			mg/L		5	4.8		96	5	90-110				
			2954025											
LABORATORT COI	NTROL 3/		2004900	Snike	10	s		LCS	% F	lec				
Paran	neter		Units	Conc.	Res	sult	ç	% Rec	Lim	its	Qualifiers			
Chloride			mg/L		5	4.9		97	,	90-110		_		
Fluoride			mg/L	2.	5	2.4		97	,	90-110				
Sulfate			mg/L		5	4.9		98	3	90-110				
MATRIX SPIKE & M		סוגב טו וסו	ICATE: 2850	670		28506	71							
		INC DUFL	-1071E. 2000	MS	MSD	20000	, ,							
			60360745002	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	r	Units	Result	Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	1890	1000	1000	304	0	3260	115	13	8 80-120	7	15	M1
Fluoride		mg/L	0.25	2.5	2.5	6.	1	5.8	234	22	4 80-120	4	15	M1
Sulfate		mg/L	47.5	25	25	74.	7	74.2	109	10	7 80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

MATRIX SPIKE SAMPLE:	2850672						
		60362783002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	269	100	385	116	80-120	
Fluoride	mg/L	ND	50	51.4	99	80-120	
Sulfate	mg/L	1930	1000	2950	102	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60363071

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60363071001	MW-1-030821	EPA 200.7	707888	EPA 200.7	708029
60363071002	MW-4-030821	EPA 200.7	707888	EPA 200.7	708029
60363071003	MW-5-030821	EPA 200.7	707888	EPA 200.7	708029
60363071004	MW-6-030821	EPA 200.7	707888	EPA 200.7	708029
60363071005	DUP-322LF-030821	EPA 200.7	707888	EPA 200.7	708029
60363071001	MW-1-030821	EPA 3010	708275	EPA 6010	708413
60363071002	MW-4-030821	EPA 3010	708275	EPA 6010	708413
60363071003	MW-5-030821	EPA 3010	708275	EPA 6010	708413
60363071004	MW-6-030821	EPA 3010	708275	EPA 6010	708413
60363071005	DUP-322LF-030821	EPA 3010	708275	EPA 6010	708413
60363071001	MW-1-030821	EPA 200.8	708124	EPA 200.8	708211
60363071002	MW-4-030821	EPA 200.8	708124	EPA 200.8	708211
60363071003	MW-5-030821	EPA 200.8	708124	EPA 200.8	708211
60363071004	MW-6-030821	EPA 200.8	708124	EPA 200.8	708211
60363071005	DUP-322LF-030821	EPA 200.8	708124	EPA 200.8	708211
60363071001	MW-1-030821	SM 2540C	708388		
60363071002	MW-4-030821	SM 2540C	708388		
60363071003	MW-5-030821	SM 2540C	708388		
60363071004	MW-6-030821	SM 2540C	708388		
60363071005	DUP-322LF-030821	SM 2540C	708388		
60363071001	MW-1-030821	SM 4500-H+B	708498		
60363071002	MW-4-030821	SM 4500-H+B	708498		
60363071003	MW-5-030821	SM 4500-H+B	708498		
60363071004	MW-6-030821	SM 4500-H+B	708498		
60363071005	DUP-322LF-030821	SM 4500-H+B	708498		
60363071001	MW-1-030821	EPA 300.0	707847		
60363071002	MW-4-030821	EPA 300.0	707847		
60363071003	MW-5-030821	EPA 300.0	707847		
60363071004	MW-6-030821	EPA 300.0	707847		
60363071005	DUP-322LF-030821	EPA 300.0	707847		

Pace Analytical Sample Condition	Upon Receipt	WO#:60363071
Client Name: Every hasas Certal Courier: FedEx UPS VIA Clay		Pace Xroads Client Other
Tracking #: Pa	ace Shipping Label Used	i? Yes 🗆 No 🖊
Custody Seal on Cooler/Box Present: Yes No 🗅	Seals intact: Yes Z	No 🗆
Packing Material: Bubble Wrap Bubble Bags Thermometer Used: Type	□ Foam □ of Ice: ₩ Blue Nor	None Other Other
Cooler Temperature (°C): As-read ZO Corr. Fac Temperature should be above freezing to 6°C	ctor <u>492</u> Correct	ed 7.2 Date and initials of person examining contents: 3-8-2/40
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:		
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:	□Yes □Mo □N/A	ξi β
Sufficient volume:		
Correct containers used:	Yes No N/A	
Pace containers used:	Yes No N/A	
Containers intact:		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No /□N/A	
Filtered volume received for dissolved tests?	□Yes □No €N/A	
Sample labels match COC: Date / time / ID / analyses	Yes No N/A	
Samples contain multiple phases? Matrix:	□Yes INo □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	693173	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	🗆 Yes 🗆 No 🔎 MA	
Headspace in VOA vials (>6mm):	□Yes □No ▲N/A	
Samples from USDA Regulated Area: State:	□Yes □No □11/A	
Additional labels attached to 5035A / TX1005 vials in the field	1? DYes DNo DHTA	
Client Notification/ Resolution: Copy COC Person Contacted: Date/ Comments/ Resolution:	to Client? Y 7 N Time:	Field Data Required? Y / N
Project Manager Peview	Data	

P iyei

Date.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section Require	A d Client Information:	Section E	B Projec	at Info	mation [,]					Sect	ion C	;															ſ	Pa	ae:	1	of	1	
Company	EVERGY KANSAS CENTRAL, INC.	Report To:	And	drew	Hare, Me	lissa Mic	hels. Sam	antha Ka	nev	Atten	tion:	rmatic A	on: CCOU	ints	Pava	able	-			_	_						Ļ	_		<u> </u>			
Address	Tecumseh Energy Center (TEC)	Copy To:	Jar	ed M	orrison J	ake Hum	phrev La	ura Hine		Com	any N	lame'	EV				242	00	ITO	A1	INIC		-		-	-	_	_	_	_		_	
	818 Kansas Ave, Topeka, KS, 66612		Mel	ania	Satanok	Denielle	Oborbroo	alding	,	Addr		io/no.					AG	CER	NTR.	AL,	INC	REC	SUL	ATO	RY /	\GE	VCY						
Email To	andrew hare@everay.com	Purchase	Order	No	Salanek,	Danielle	Oberbroe	скилд		Raco	Oueto		SE	ES	ECT	ION	A	_	_	_		Г	NPI	DES	V	GF	ROUN	N DI	VATE	R	DRINKIN	IG WATE	ĒR
Phone:	(795) 575 9429	Designt Ma	order			1511 0.05				Refer	ence:			_								Г	US	Г	Г	RC	RA			Г	OTHER	_	
Paquaet		Project Na	me.	TEC	5 322 Lar		<			Mana	project ger:	Já	asmi	ne A	\mer	in, 9	13-5	63-1	403	3		Sit	e Lo	catio	n		ĸs						
Inequest	du Due Date/TAT. 7 DAT	Project Nu	mber:							Pace	Profile #	#: 96	656,	1									S	ATE					-				
			r	-				_	_	-		_	_	_	_	_		F	Redr	Jest	ed /	nal	ysis	Filte	ered	(Y/N	I)						
	Section D Valid Matrix C Required Client Information MATRIX	odes CODE	o left)	(MP)		COLL	ECTED					Pr	eser	vativ	/es		E	N	N	N	N	N	N										
	DRINKING WATER WATER	DW WT	odes t				T		S			Ť			Ť		ŕ	H	-			+		+	+	+		-ť	T				
	WASTE WATER PRODUCT	WW P	alid co	AB	COMP STA	'OSITE IRT	COMPO END/GF	SITE RAB	ECT								1						.						î				
		SL OL	see v	-GR					5	ŝ							l ⇒	*s	als*				**						3				
		WP AR	ш	0					Ă	L H							est	let	let		7	-l	eta						June				
	Sample IDs MUST BE UNIQUE TISSUE	TS	B	ΥPE					MP	IAI	Ved						<u>[5</u>]	al		ဂ္ဂ	ы	힖	2 ≤			1			З				
*			ž	L L L		1			Ē	Ś	ser	4		_	ရွိနြ		<u> </u>	Р	P	E	늸	Ξl	Ë						la	1	~ ~ ~	01	
TEM			ATF	AMP					AMP	Ь	udu udu	No No No	0	ģ	a ₂ S	the lat	Å	0.7	0.8	40	ä	8	2						esid	QU	3630	571	1920
	MM/ 1 020821		2	0	DATE	TIME	DATE	TIME	ω	#			프	Z		20	╞	Ř	Ň	ñ	<u></u>	4	<u></u>	+	-	+	\vdash	+	≝	Pace	Project	No./ Lat) I.D.
	MW-1-030821		WI	G			03/08/21	10:55	+	3	2	1	+		+	+		X	X	X	X	X	X	-	+	-		+	+				001
3	MW-5-030821		WT	G			03/08/21	13:50	+	3	2		+		-	+-		×	X	X	X	X	X	+	+	+	\vdash	000					OOL
4	MW-6-030821		WT				03/08/21	11:50	\vdash	3	2		+	\vdash	+	+	1	×.	X	X	X	Ť	X	+	+	+		╉	÷				DOG
5	DUP-322LF-030821		WT	G			03/08/21	10:55		3	2			H		+	1	Ê	Ŷ	Ŷ	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	^ v	+	-	-		+	+	_	_		274
6				Ť			GUICULET	10.00		Ť		+	T		+	+	1	Ê	Â	Ĥ	Ĥ	Ĥ	^	╈	+			+	+				<u>005</u>
7											Ħ		П				1					\uparrow	1					+					
8											H		\square				1						1		1	1		+					_
9															ľ		1												1				
10]																
11																																	
12																																	
	ADDITIONAL COMMENTS		REL	INQUI	SHED BY	AFFILIAT	ION	DAT		1	'IME				ACCE	EPTE	D BY	/ AFI	FILIA	TION	1		D	ATE		TIME				SAMF		IONS	
200,7 To	tal Metals*: B, Ca, Ba			Jaso	n R. Franl	ks / SCS		3/8/2	1	1	6:30		Ø.	AV	too	nla	a	e					3-	1-2	Π	64	S	7.0	2	4	V	4	
200.8 To	tal Metals**: Co, Mo											1				-11											-				1	1	
6010 Tot	al Metals***: Li					-			_	-		+	_			-		-	-		-	+	-		+				+				
<u> </u>										-		-		-			-		-	_	_	+	-	_	+	_	-	_	-				
						Louve .					-		_	-	-	_	_	_	_	-	_		_			_	-					+ +	
Pag						SAMPLE		IND SIGN					_							_								° °		(N/	ody Coole ()		,
je 2								e or SAMP	LER:	Jaso	лR,	Fran	nks)	1	1	21			Sione	ed	_			_		_	emp	·	sceiv. Ice (Y	Custo aled ((Y/N		ž
6 of							SIGNATURI	E of SAMP	LER:	10	28	27	K.	- 7	L	am	h	TN	M/D	D/YY):			3/8/	21			Ť		ž –	Se.	L Sal	
26										1				1																			

ATTACHMENT 1-2

June 2021 Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 15, 2021

Andrew Hare Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR Pace Project No.: 60371392

Dear Andrew Hare:

Enclosed are the analytical results for sample(s) received by the laboratory on June 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

Revised Report REV_1

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Laura Hines, Evergy, Inc. Heath Horyna, Evergy, Inc.
Jake Humphrey, Evergy, Inc.
Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc.
Jared Morrison, Evergy, Inc.
Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc.

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60371392001	MW-1-060721	Water	06/07/21 10:30	06/07/21 15:50
60371392002	MW-4-060721	Water	06/07/21 11:45	06/07/21 15:50
60371392003	MW-5-060721	Water	06/07/21 13:10	06/07/21 15:50
60371392004	MW-6-060721	Water	06/07/21 11:35	06/07/21 15:50
60371392005	DUP-322LF-060721	Water	06/07/21 10:30	06/07/21 15:50

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60371392001	MW-1-060721	EPA 200.7	JDE	4	PASI-K
		EPA 6010	JDE	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60371392002	MW-4-060721	EPA 200.7	JDE	4	PASI-K
		EPA 6010	JDE	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60371392003	MW-5-060721	EPA 200.7	JDE	4	PASI-K
		EPA 6010	JDE	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60371392004	MW-6-060721	EPA 200.7	JDE	4	PASI-K
		EPA 6010	JDE	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60371392005	DUP-322LF-060721	EPA 200.7	JDE	4	PASI-K
		EPA 6010	JDE	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Date: July 15, 2021

Amended report revised to include redigested and reanalyzed mercury sample results.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:July 15, 2021

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Method: EPA 6010

Description:6010 MET ICPClient:Evergy Kansas Central, Inc.Date:July 15, 2021

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:July 15, 2021

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Method: EPA 245.1

Description:245.1 MercuryClient:Evergy Kansas Central, Inc.Date:July 15, 2021

General Information:

5 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H1: Analysis conducted outside the EPA method holding time.
 - DUP-322LF-060721 (Lab ID: 60371392005)
 - MW-1-060721 (Lab ID: 60371392001)
 - MW-4-060721 (Lab ID: 60371392002)
 - MW-5-060721 (Lab ID: 60371392003)
 - MW-6-060721 (Lab ID: 60371392004)

H2: Extraction or preparation conducted outside EPA method holding time.

- DUP-322LF-060721 (Lab ID: 60371392005)
- MW-1-060721 (Lab ID: 60371392001)
- MW-4-060721 (Lab ID: 60371392002)
- MW-5-060721 (Lab ID: 60371392003)
- MW-6-060721 (Lab ID: 60371392004)

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:July 15, 2021

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Sample: MW-1-060721	Lab ID: 6037	71392001	Collected: 06/07/2	10:3	0 Received: 06	/07/21 15:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	00.7 Preparation Meth	od: E	PA 200.7			
	Pace Analytica	Services -	Kansas City					
Barium, Total Recoverable	0.087	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:05	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/08/21 16:57	06/10/21 16:05	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:05	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	06/08/21 16:57	06/10/21 16:05	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EF	PA 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/09/21 10:07	06/10/21 16:25	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	00.8 Preparation Meth	od: E	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7440-36-0	
Arsenic, Total Recoverable	0.0013	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/09/21 10:07	06/14/21 14:51	7440-43-9	
Cobalt, Total Recoverable	0.0014	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 14:51	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	45.1 Preparation Meth	od: E	PA 245.1			
	Pace Analytica	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	07/12/21 15:36	07/13/21 13:03	7439-97-6	H1,H2
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/15/21 12:51	16984-48-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Sample: MW-4-060721	Lab ID: 6037	1392002	Collected: 06/07/2	1 11:4	5 Received: 06	07/21 15:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Meth	nod: El	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.098	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:07	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/08/21 16:57	06/10/21 16:07	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:07	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	06/08/21 16:57	06/10/21 16:07	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	od: EF	PA 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/09/21 10:07	06/10/21 16:27	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Meth	nod: El	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/09/21 10:07	06/14/21 15:06	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:06	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Meth	nod: El	PA 245.1			
	Pace Analytical	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	07/12/21 15:36	07/13/21 13:05	7439-97-6	H1,H2
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytical	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/15/21 13:03	16984-48-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Sample: MW-5-060721	Lab ID: 6037	1392003	Collected: 06/07/22	13:1	0 Received: 06	/07/21 15:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Meth	od: E	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.019	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:10	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/08/21 16:57	06/10/21 16:10	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:10	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	06/08/21 16:57	06/10/21 16:10	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EF	PA 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/09/21 10:07	06/10/21 16:35	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Meth	od: E	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/09/21 10:07	06/14/21 15:09	7440-43-9	
Cobalt, Total Recoverable	0.0018	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:09	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	15.1 Preparation Meth	od: E	PA 245.1			
	Pace Analytical	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	07/12/21 15:36	07/13/21 13:12	7439-97-6	H1,H2
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/15/21 13:15	16984-48-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Sample: MW-6-060721	Lab ID: 6037	71392004	Collected: 06/07/2	1 11:3	5 Received: 06	/07/21 15:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Meth	nod: E	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:12	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/08/21 16:57	06/10/21 16:12	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:12	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	06/08/21 16:57	06/10/21 16:12	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	od: EF	PA 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/09/21 10:07	06/10/21 16:37	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Meth	nod: E	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/09/21 10:07	06/14/21 15:13	7440-43-9	
Cobalt, Total Recoverable	0.0022	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:13	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Meth	nod: E	PA 245.1			
	Pace Analytical	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	07/12/21 15:36	07/13/21 13:14	7439-97-6	H1,H2
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytical	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/15/21 13:27	16984-48-8	

Project: TEC 322 LANDFILL CCR

1 10,000

Pace Project No.: 60371392

Sample: DUP-322LF-060721	Lab ID: 603	71392005	Collected: 06/07/2	1 10:3	0 Received: 06	5/07/21 15:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	nod: E	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.083	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:15	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/08/21 16:57	06/10/21 16:15	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/08/21 16:57	06/10/21 16:15	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	06/08/21 16:57	06/10/21 16:15	7439-92-1	
6010 MET ICP	Analytical Meth	nod: EPA 60	010 Preparation Meth	od: EF	PA 3010			
	Pace Analytica	I Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/09/21 10:07	06/10/21 16:40	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	nod: E	PA 200.8			
	Pace Analytica	I Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7440-36-0	
Arsenic, Total Recoverable	0.0013	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/09/21 10:07	06/14/21 15:16	7440-43-9	
Cobalt, Total Recoverable	0.0014	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/09/21 10:07	06/14/21 15:16	7440-28-0	
245.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	nod: E	PA 245.1			
	Pace Analytica	I Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	07/12/21 15:36	07/13/21 13:17	7439-97-6	H1,H2
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
	Pace Analytica	I Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/15/21 13:39	16984-48-8	

Project:	TEC 322 LANDFII	LL CCR										
Pace Project No.:	60371392											
QC Batch:	731490		Anal	ysis Metho	od:	EPA 245.1						
QC Batch Method:	EPA 245.1		Anal	ysis Descri	iption:	245.1 Mercu	ury					
			Labo	oratory:		Pace Analyt	ical Servic	es - Kansas	s City			
Associated Lab Sar	nples: 60371392	001, 6037139200	2, 6037139	92003, 603	371392004,	603713920	05					
METHOD BLANK:	2936642			Matrix: W	/ater							
Associated Lab Sar	nples: 60371392	001, 6037139200	2, 6037139	92003, 603	371392004,	603713920	05					
			Bla	nk	Reporting							
Paran	neter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	6			
Mercury		ug/L	_	<0.20	0.2	0 07/13/2	1 12:58					
LABORATORY CO	NTROL SAMPLE:	2936643										
			Spike	LC	CS	LCS	% R	ec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Limi	ts C	Qualifiers			
Mercury		ug/L		5	4.9	97	7 8	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DUF	PLICATE: 2936	644		2936645	5						
		00074000000	MS	MSD					04 F			
Doromoto	• I In:te	60371392002	Spike	Spike	MS	MSD	MS % Dee	MSD	% Rec	חחח	Max	Qual
Parameter			Conc.	Conc.	Result	Result	% Rec	% Rec	Limits			Quai
Mercury	ug/L	<0.20	5	5	4.7	4.8	93	96	70-130	3	20	H1
MATRIX SPIKE SAI	MPLE:	2936646										
			60374	059003	Spike	MS		MS	% Rec	;		
Parar	neter	Units	Re	esult	Conc.	Result	%	Rec	Limits		Quali	fiers
Mercury		ug/L		ND	5		4.8	97	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LAND	FILL CCR										
Pace Project No .:	60371392											
QC Batch:	725170		Anal	ysis Metho	d: E	PA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descri	ption: 2	00.7 Metals	s, Total					
			Labo	oratory:	Р	ace Analvti	cal Servic	es - Kansa	s Citv			
Associated Lab Sar	nples: 603713	92001, 6037139200	02, 6037139	92003, 603	71392004, 6	037139200)5		,			
METHOD BLANK:	2914197			Matrix: W	/ater							
Associated Lab Sar	nples: 603713	92001, 6037139200	02, 6037139	92003, 603	71392004, 6	037139200)5					
			Bla	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Barium		mg/L	<	0.0050	0.0050	06/09/21	19:53					
Beryllium		mg/L	<	0.0010	0.0010	06/09/21	19:53					
Chromium		mg/L	<	0.0050	0.0050	06/09/21	19:53					
Lead		mg/L		<0.010	0.010	06/09/21	19:53					
		· 2914198										
		2011100	Spike	LC	s	LCS	% R	lec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers			
Barium		mg/L		1	1.0	104		85-115				
Beryllium		mg/L		1	1.1	105		85-115				
Chromium		mg/L		1	1.1	105	i .	85-115				
Lead		mg/L		1	1.1	107		85-115				
MATRIX SPIKE SAI		2914199										
		2011100	60371	064003	Spike	MS		MS	% Rec	;		
Paran	neter	Units	Re	esult	Conc.	Result	9	% Rec	Limits		Qualif	iers
Barium				134 ua/l			13	113	70	-130		
BervIlium		mg/L		ND	1		1.1	110	70	-130		
Chromium		ma/L		ND	1		1.1	113	70	-130		
Lead		mg/L		ND	1		1.1	113	70	-130		
			200		2014201							
WATKIN SPIKE & N	IN RIA SPIKE D	UFLIGATE: 2914	1200 MC	Men	2914201							
		60371274003	snika	Snika	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium		g/L 97.6 ug/L	1	1	1.1	1.1	100	100	70-130	1	20	
Beryllium	m	g/L ND	1	1	1.0	1.0	104	104	70-130	0	20	
Chromium	m	g/L 13.2 ug/L	1	1	1.0	1.0	100	100	70-130	0	20	
Lead	m	g/L ND	1	1	1.0	1.0	100	99	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Matrix: Water

EPA 200.8

200.8 MET

Pace Analytical Services - Kansas City

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

QC Batch:	725230	Analysis Method:
QC Batch Method:	EPA 200.8	Analysis Description:
		Laboratory:

Associated Lab Samples: 60371392001, 60371392002, 60371392003, 60371392004, 60371392005

METHOD BLANK: 2914312

Associated Lab Samples: 60371392001, 60371392002, 60371392003, 60371392004, 60371392005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	06/14/21 14:13	
Arsenic	mg/L	<0.0010	0.0010	06/14/21 14:13	
Cadmium	mg/L	<0.00050	0.00050	06/14/21 14:13	
Cobalt	mg/L	<0.0010	0.0010	06/14/21 14:13	
Molybdenum	mg/L	<0.0010	0.0010	06/14/21 14:13	
Selenium	mg/L	<0.0010	0.0010	06/14/21 14:13	
Thallium	mg/L	<0.0010	0.0010	06/14/21 14:13	

LABORATORY CONTROL SAMPLE: 2914313

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.042	104	85-115	
Arsenic	mg/L	0.04	0.043	107	85-115	
Cadmium	mg/L	0.04	0.043	108	85-115	
Cobalt	mg/L	0.04	0.040	100	85-115	
Molybdenum	mg/L	0.04	0.043	107	85-115	
Selenium	mg/L	0.04	0.043	107	85-115	
Thallium	mg/L	0.04	0.042	104	85-115	

MATRIX SPIKE SAMPLE:	2914314						
Parameter	Units	60371062001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	mg/L	ND	0.04	0.040	99	70-130	
Arsenic	mg/L	2.1 ug/L	0.04	0.042	101	70-130	
Cadmium	mg/L	ND	0.04	0.039	96	70-130	
Cobalt	mg/L	ND	0.04	0.036	89	70-130	
Molybdenum	mg/L	5.5 ug/L	0.04	0.047	103	70-130	
Selenium	mg/L	ND	0.04	0.037	89	70-130	
Thallium	mg/L	ND	0.04	0.037	92	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2914315 2914316												
Parameter	Units	60371392001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	mg/L	<0.0010	0.04	0.04	0.039	0.040	96	99	70-130	3	20	
Arsenic	mg/L	0.0013	0.04	0.04	0.042	0.043	101	105	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

MATRIX SPIKE & MATRIX SPI	KE DUPI	LICATE: 2914	315		2914316							
			MS	MSD								
		60371392001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	<0.00050	0.04	0.04	0.038	0.039	95	97	70-130	2	20	
Cobalt	mg/L	0.0014	0.04	0.04	0.036	0.037	87	89	70-130	3	20	
Molybdenum	mg/L	<0.0010	0.04	0.04	0.042	0.043	103	106	70-130	3	20	
Selenium	mg/L	<0.0010	0.04	0.04	0.035	0.036	87	89	70-130	2	20	
Thallium	mg/L	<0.0010	0.04	0.04	0.037	0.038	91	94	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LANDFIL	L CCR											
Pace Project No.:	60371392												
QC Batch:	725232		Ana	Analysis Method: EPA 6010									
QC Batch Method:	EPA 3010		Ana	lysis Des	cription:	6010 MET							
				oratory:		Pace Analy	tical Servic	es - Kansa	s City				
Associated Lab Sar	mples: 60371392	001, 6037139200	02, 603713	392003, 6	0371392004	l, 603713920	05						
METHOD BLANK:	2914322			Matrix:	Water								
Associated Lab Sar	mples: 60371392	001, 6037139200	02, 603713	392003, 6	0371392004	, 603713920	05						
			Bla	ank	Reporting	ļ							
Parar	neter	Units	Re	sult	Limit	Anal	yzed	Qualifier	S				
Lithium		mg/L		<0.010	0.0	06/10/2	1 16:22						
LABORATORY CO	NTROL SAMPLE:	2914323											
			Spike	Ð	LCS	LCS	% F	Rec					
Parar	neter	Units	Conc	:. F	Result	% Rec	Lim	its	Qualifiers				
Lithium		mg/L		1	1.0	10	0	80-120		_			
MATRIX SPIKE & N	ATRIX SPIKE DUF	PLICATE: 2914	324		291432	25							
			MS	MSD									
		60371402006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Lithium	mg/L	25.3 ug/L	1		1 1.0	0 1.0	101	100	75-125	2	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	TEC 322 LANDF	ILL CCR										
Pace Project No.:	60371392											
QC Batch:	726105		Analy	sis Methoo	d: E	EPA 300.0						
QC Batch Method:	EPA 300.0		Analy	sis Descrip	otion: 3	300.0 IC Ar	nions					
			Labor	atory:	F	Pace Analy	tical Serv	ices - Kansa	as City			
Associated Lab Sa	mples: 6037139	92001, 6037139200	2, 60371392	2003, 6037	71392004, (603713920)05					
METHOD BLANK:	2917706			Matrix: Wa	ater							
Associated Lab Sar	mples: 6037139	2001, 6037139200	2, 60371392	2003, 6037	71392004, (603713920	005					
			Blan	k I	Reporting							
Para	meter	Units	Resu	ilt	Limit	Ana	yzed	Qualifie	rs			
Fluoride		mg/L		<0.20	0.20	0 06/14/2	1 17:08					
METHOD BLANK:	2919317			Matrix: Wa	ater							
Associated Lab Sa	mples: 6037139	2001, 6037139200	2, 60371392	2003, 6037	71392004, (603713920	005					
			Blan	k l	Reporting							
Para	meter	Units	Resu	llt	Limit	Ana	yzed	Qualifie	rs			
Fluoride		mg/L		<0.20	0.2	0 06/15/2	1 08:03					
	NTROL SAMPLE	2917707										
		2311101	Spike	LC	S	LCS	%	Rec				
Para	meter	Units	Conc.	Res	ult	% Rec	Lir	nits	Qualifiers			
Fluoride		mg/L	2.8	5	2.4	ç	94	90-110				
LABORATORY CO	NTROL SAMPLE:	2919318										
			Spike	LC	S	LCS	%	Rec				
Para	meter	Units	Conc.	Res	ult	% Rec	Lir	nits	Qualifiers			
Fluoride		mg/L	2.5	5	2.4	ę	16	90-110		_		
MATRIX SPIKE SA	MPLE:	2917708										
			603710	005001	Spike	MS		MS	% Rec	;		
Para	meter	Units	Res	sult	Conc.	Result		% Rec	Limits		Qualif	iers
Fluoride		mg/L		7.9	50		48.1	80	80	-120		
MATRIX SPIKE & M	MATRIX SPIKE DL	JPLICATE: 2917	709		2917710							
	. – –		MS	MSD								
Paramete	r Ilni	60371297006 ts Result	Spike Conc	Spike Conc	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Fluoride			25	25	20			4 0	7 <u>80-120</u>		15	
	ing,	0.57	2.0	2.5	2.3	2.1	9	- 0	00-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

SAMPLE DUPLICATE: 2917711						
		60371297006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Fluoride	mg/L	0.57	0.56	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60371392

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60371392001	MW-1-060721	EPA 200.7	725170	EPA 200.7	725221
60371392002	MW-4-060721	EPA 200.7	725170	EPA 200.7	725221
60371392003	MW-5-060721	EPA 200.7	725170	EPA 200.7	725221
60371392004	MW-6-060721	EPA 200.7	725170	EPA 200.7	725221
60371392005	DUP-322LF-060721	EPA 200.7	725170	EPA 200.7	725221
60371392001	MW-1-060721	EPA 3010	725232	EPA 6010	725383
60371392002	MW-4-060721	EPA 3010	725232	EPA 6010	725383
60371392003	MW-5-060721	EPA 3010	725232	EPA 6010	725383
60371392004	MW-6-060721	EPA 3010	725232	EPA 6010	725383
60371392005	DUP-322LF-060721	EPA 3010	725232	EPA 6010	725383
60371392001	MW-1-060721	EPA 200.8	725230	EPA 200.8	725381
60371392002	MW-4-060721	EPA 200.8	725230	EPA 200.8	725381
60371392003	MW-5-060721	EPA 200.8	725230	EPA 200.8	725381
60371392004	MW-6-060721	EPA 200.8	725230	EPA 200.8	725381
60371392005	DUP-322LF-060721	EPA 200.8	725230	EPA 200.8	725381
60371392001	MW-1-060721	EPA 245.1	731490	EPA 245.1	731688
60371392002	MW-4-060721	EPA 245.1	731490	EPA 245.1	731688
60371392003	MW-5-060721	EPA 245.1	731490	EPA 245.1	731688
60371392004	MW-6-060721	EPA 245.1	731490	EPA 245.1	731688
60371392005	DUP-322LF-060721	EPA 245.1	731490	EPA 245.1	731688
60371392001	MW-1-060721	EPA 300.0	726105		
60371392002	MW-4-060721	EPA 300.0	726105		
60371392003	MW-5-060721	EPA 300.0	726105		
60371392004	MW-6-060721	EPA 300.0	726105		
60371392005	DUP-322LF-060721	EPA 300.0	726105		

Sample Condition Upon Receipt

WO#:60371392

Client Name: Everau Kansas		
Courier: FedEx UPS VIA Clay	PEX 🗆 ECI 🗆	Pace 🗆 Xroads 🗋 Client 🖵 Other 🗆
Tracking #: P	ace Shipping Label Use	ed? Yes 🗆 No 🕞
Custody Seal on Cooler/Box Present: Yes 📈 No 🗆	Seals intact: Yes	No 🗆
Packing Material: Bubble Wrap 🗆 Bubble Bag	s 🗆 🛛 Foam 🗋	None D Other Diple
Thermometer Used: <u>1-248</u> Type	of Ice: Wet Blue No	one
Cooler Temperature (°C): As-read <u>9-5</u> Corr. Fa	ctor 0-0 Correc	ted 9.5 Date and initials of person examining contents 7-11 Ø
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Ves No N/A	
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:		
Sufficient volume:		
Correct containers used:	Yes No N/A	
Pace containers used:		
Containers intact:	Mes ONO ON/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □₩#A	
Filtered volume received for dissolved tests?	Yes No	
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix: M	Yes Mo N/A	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS, TPH, OK, DRO)	03172	date/time added.
Cyanide water sample checks:	<i>c</i> - <i>n</i> (<i>y</i>)	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	Yes No	
Headspace in VOA vials (>6mm):	□Yes □No □₩7A	
Samples from USDA Regulated Area: State:	□Yes □No □N/ A	
Additional labels attached to 5035A / TX1005 vials in the field		
Client Notification/ Resolution: Copy COC t	o Client? Y	Field Data Required? Y / N
Person Contacted: Date/	lime:	
Comments/ Resolution:		

Project Manager Review:

Date:

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT: All relevant fields must be completed accurately.

Г

Section A		Section B			Section C					Γ.			
Required	Client Information:	Required Project Information:			nvoice Inform	lation:				-	age:	of	
Company:	EVERGY KANSAS CENTRAL, INC.	Report To: Andrew Hare, Mell	ssa Michels, Saman	tha Kaney	Attention:	Accounts Payable							
Address:	Tecumseh Energy Center (TEC)	Copy To: Jared Morrison, Ja	ke Humphrey, Laura	Hines	Company Nan	ne: EVERGY KAN	SAS CENTRAL,	ING REGI	ILATORY A	VGENCY			
	818 Kansas Ave, Topeka, KS 66612	Melanie Satanek,	Danielle Oberbroeck	ing	Address:	SEE SECTION	A	2	PDES X	GROUND	WATER	DRINKING	WATER
Email To:	andrew.hare@evergy.com	Purchase Order No.			Pace Quote Reference:				IST I	RCRA	i	OTHER	
Phone: (785) 575-8428 Fax	Project Name: TEC 322 Lan	Jfill CCR		Pace Project Manager:	Jasmine Amerin,	913-563-1403	Site	-ocation				
Requested	1 Due Date/TAT: 7 DAY	Project Number:			ace Profile #:	9656, 2			STATE:	SX			
							Reques	ted Analy:	is Filtered	(N/A)			
v) ez	ection D Valid Matrix C equired Client Information MATRIX	odes copE copE	COLLECTED			Preservatives	1 N /A						
	DRINKING WATER WATER WASTE WATER PRODUCT SOLUCOLD OIL	은 또 가 한 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	SITE COMPOSITE END/GRAB	OLLECTION	s		اک*** ۱۵×** ۱۵×* ۱۵×*				(N/A)	37139	2
	SAMPLE ID WIPE (A-Z, 0-9 /) OTHER Sample IDs MUST BE UNIQUE TISSUE	아프 (G= 20DE (3 20DE (3		EMP AT C	.ЯЗИІАТИ рэм		tesT eis tal Mets tal Mets tal Meta staM Is:	1			Shlorine		
# MƏTI) XIATAM T JJAMA2 TATA	TIME	H M T 3J9MA2	H ⁵ 2O ⁴ Nublesei # OE COI	Methano Methano NaOH HCI HNO3	1900 200.7 To 200.8 To 201.0 T	300.0; F			Residual	ce Project N	o./ Lab I.D.
-	MW-1-066721	WT (9,	(a/7/21	53	X		× + +	X					
2	MW-4-060721	wr Co	Cd/7/2)	166	12	1		-					
m	mw-5-060721	WT 6	(a/2/2)	1310	1 2								
4	mw-6-060721	WT G	(e/7/2i	135	1 7	_							
s	Duys - 322LF - 6607	21 WT 6	(d/7/21	1030	1 7								
φ					_								
Γ α													
0 0													
10													
11					_								
12					-					-			
	ADDITIONAL COMMENTS	RELINQUISHED BY /	AFFILIATION	DATE	TIME	ACCEPT	ED BY / AFFILIATIO	z	DATE	TIME	SA	MPLE CONDITI	ONS
200.7 Tota	il Metals": Ba, Be, Cr, Pb	allorman	Scs	d7124	1550	E Braket	1 Pace	<u>(</u>	1 10-6	550 9.	2	>	
200.8 Tota	ll Metals**: Sb, As, Cd, Co, Mo, Se, Tl										7	-	
6010 Total	Metals***: Li												
P													
age			SAMPLER NAME AN	O SIGNATUR							A)	(NI) (VI)	Joeln
26 (PRINT Name o	of SAMPLER:	Whi	t Martin					ni qm	ody S	l səlq (N/Y)
of 26			SIGNATURE	of SAMPLER:	Sulty	ANDRO	DATE Sign (MM/DD/Y	r): 06,	07/21	_	Tei Rec I)sn)	ms2

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 06, 2021

Andrew Hare Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 Landfill CCR Pace Project No.: 60372053

Dear Andrew Hare:

Enclosed are the analytical results for sample(s) received by the laboratory on June 08, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Laura Hines, Evergy, Inc. Heath Horyna, Evergy, Inc.
Jake Humphrey, Evergy, Inc.
Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc.
Jared Morrison, Evergy, Inc.
Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc.

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC 322 Landfill CCR Pace Project No.: 60372053

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60372053001	MW-1-060721	Water	06/07/21 10:30	06/08/21 10:15
60372053002	MW-4-060721	Water	06/07/21 11:15	06/08/21 10:15
60372053003	MW-5-060721	Water	06/07/21 13:10	06/08/21 10:15
60372053004	MW-6-060721	Water	06/07/21 11:35	06/08/21 10:15
60372053005	DUP-382LF-060721	Water	06/07/21 10:30	06/08/21 10:15

SAMPLE ANALYTE COUNT

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60372053001	MW-1-060721	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
60372053002	MW-4-060721	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
60372053003	MW-5-060721	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
60372053004	MW-6-060721	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
60372053005	DUP-382LF-060721	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Method: EPA 903.1

Description:903.1 Radium 226Client:Evergy Kansas Central, Inc.Date:July 06, 2021

General Information:

5 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Method: EPA 904.0

Description:904.0 Radium 228Client:Evergy Kansas Central, Inc.Date:July 06, 2021

General Information:

5 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 452699

- 1e: Analyte detected in Method Blank above reporting limit of 1.0 pCi/L. Samples with activity results below their associated MDC or the client RDL are reportable without qualification.
 - DUP-382LF-060721 (Lab ID: 60372053005)
 - Radium-228
 - MW-1-060721 (Lab ID: 60372053001)
 - Radium-228
 - MW-4-060721 (Lab ID: 60372053002)
 - Radium-228
 - MW-5-060721 (Lab ID: 60372053003)
 - Radium-228
 - MW-6-060721 (Lab ID: 60372053004)
 - Radium-228

2e: Analyte detected in Method Blank above reporting limit of 1.0 pCi/L. Samples with activity results below their associated MDC or the client RDL are reportable without qualification.

Results for sample with activity greater than the client RDL may be qualified.

- BLANK (Lab ID: 2185412)
 - Radium-228

3e: Method Blank re-analyzed due to activity > MDC. Re-analysis results are satisfactory.

- BLANK (Lab ID: 2185412)
 - Radium-228

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Method: Total Radium Calculation

Description:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:July 06, 2021

General Information:

5 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Sample: MW-1-060721 PWS:	Lab ID: 60372053 Site ID:	001 Collected: 06/07/21 10:30 Sample Type:	Received:	06/08/21 10:15 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Servi	ices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.268 (0.545) C:NA T:83%	pCi/L	06/30/21 13:41	13982-63-3	
	Pace Analytical Servi	ices - Greensburg				
Radium-228	EPA 904.0	0.434 ± 0.378 (0.758) C:71% T:81%	pCi/L	06/28/21 14:24	15262-20-1	1e
	Pace Analytical Servi	ices - Greensburg				
Total Radium	Total Radium Calculation	0.434 ± 0.463 (0.758)	pCi/L	07/02/21 14:56	7440-14-4	

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Sample: MW-4-060721	Lab ID: 603720	53002 Collected: 06/07/21 11:15	Received:	06/08/21 10:15 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				_
Radium-226	EPA 903.1	0.656 ± 0.590 (0.896) C:NA T:91%	pCi/L	06/30/21 13:41	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 904.0	0.891 ± 0.454 (0.794) C:71% T:87%	pCi/L	06/28/21 14:24	15262-20-1	1e
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.55 ± 0.744 (0.896)	pCi/L	07/02/21 14:56	7440-14-4	

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Sample: MW-5-060721 PWS:	Lab ID: 60372053 Site ID:	Collected: 06/07/21 13:10 Sample Type:	Received:	06/08/21 10:15 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.338 (0.733) C:NA T:84%	pCi/L	06/30/21 13:53	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.252 ± 0.345 (0.738) C:74% T:91%	pCi/L	06/28/21 14:24	15262-20-1	1e
	Pace Analytical Serv	rices - Greensburg				
Total Radium	Total Radium Calculation	0.252 ± 0.483 (0.738)	pCi/L	07/02/21 14:56	7440-14-4	

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Sample: MW-6-060721	Lab ID: 60372053	004 Collected: 06/07/21 11:35	Received:	06/08/21 10:15 N	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ces - Greensburg				
Radium-226	EPA 903.1	-0.179 ± 0.310 (0.782) C:NA T:94%	pCi/L	06/30/21 13:53	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.907 ± 0.460 (0.802) C:71% T:84%	pCi/L	06/28/21 14:24	15262-20-1	1e
	Pace Analytical Serv	ices - Greensburg				
Total Radium	Total Radium Calculation	0.907 ± 0.555 (0.802)	pCi/L	07/02/21 14:56	7440-14-4	

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

Sample: DUP-382LF-060721	Lab ID: 60372	053005 Collected: 06/07/21 10:30	Received:	06/08/21 10:15 N	Aatrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	-0.0595 ± 0.308 (0.714) C:NA T:90%	pCi/L	06/30/21 13:53	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.631 ± 0.425 (0.818) C:72% T:89%	pCi/L	06/28/21 14:24	15262-20-1	1e
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	0.631 ± 0.525 (0.818)	pCi/L	07/02/21 14:56	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	TEC 322 Landfill CCR					
Pace Project No.:	60372053					
QC Batch:	452699	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 22	8		
		Laboratory:	Pace Analytical S	ervices - Greensbu	irg	
Associated Lab Sar	mples: 60372053001, 0	60372053002, 60372053003, 6037205300	4, 60372053005			
METHOD BLANK:	2185412	Matrix: Water				
Associated Lab Sar	mples: 60372053001, 0	60372053002, 60372053003, 6037205300	4, 60372053005			
Parar	neter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228	0.44	0 ± 0.357 (0.714) C:76% T:88%	pCi/L	07/01/21 10:59	Зе	
Radium-228	1.42	± 0.515 (0.758) C:71% T:88%	pCi/L	06/28/21 11:11	2e	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	TEC 322 Landfill	CCR					
Pace Project No.:	60372053						
QC Batch:	452696		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radium-2	26		
			Laboratory:	Pace Analytical	Services - Greensbur	g	
Associated Lab San	nples: 6037205	3001, 603720530	02, 60372053003, 6037205300	04, 60372053005			
METHOD BLANK:	2185409		Matrix: Water				
Associated Lab San	nples: 6037205	3001, 603720530	02, 60372053003, 6037205300	04, 60372053005			
Paran	neter	Act ±	Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.0999 ± 0.367	(0.704) C:NA T:87%	pCi/L	06/30/21 13:41		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 Landfill CCR

Pace Project No.: 60372053

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1e Analyte detected in Method Blank above reporting limit of 1.0 pCi/L. Samples with activity results below their associated MDC or the client RDL are reportable without qualification.
- 2e Analyte detected in Method Blank above reporting limit of 1.0 pCi/L. Samples with activity results below their associated MDC or the client RDL are reportable without qualification.

Results for sample with activity greater than the client RDL may be qualified.

3e Method Blank re-analyzed due to activity > MDC. Re-analysis results are satisfactory.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 Landfill CCR Pace Project No.: 60372053

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60372053001	MW-1-060721	EPA 903.1	452696		
60372053002	MW-4-060721	EPA 903.1	452696		
60372053003	MW-5-060721	EPA 903.1	452696		
60372053004	MW-6-060721	EPA 903.1	452696		
60372053005	DUP-382LF-060721	EPA 903.1	452696		
60372053001	MW-1-060721	EPA 904.0	452699		
60372053002	MW-4-060721	EPA 904.0	452699		
60372053003	MW-5-060721	EPA 904.0	452699		
60372053004	MW-6-060721	EPA 904.0	452699		
60372053005	DUP-382LF-060721	EPA 904.0	452699		
60372053001	MW-1-060721	Total Radium Calculation	455016		
60372053002	MW-4-060721	Total Radium Calculation	455016		
60372053003	MW-5-060721	Total Radium Calculation	455016		
60372053004	MW-6-060721	Total Radium Calculation	455016		
60372053005	DUP-382LF-060721	Total Radium Calculation	455016		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Section B Required Client Information: Required Project Information		Section C Invoice Information:		Page:	of]
Company: EVERGY KANSAS CENTRAL, INC. Report To: Andrew Hare,	Melissa Michels, Samantha Kaney	Attention: Accounts Payable				
Address: Tecumseh Energy Center (TEC) Copy To: Jared Morriso	n, Jake Humphrey, Laura Hines	Company Name: EVERGY KANSAS CENTRAL, INC	REGULATORY AGENC	(
818 Kansas Ave, Topeka, KS 66612 Melanie Satar	ek, Danielle Oberbroeckling	Address: SEE SECTION A	NPDES T GROU	ND WATER		WATER
Email To: andrew.hare@evergy.com Purchase Order No.;		Pace Quote Reference	UST RCRA		C OTHER	
Phone: (785) 575-8428 Fax: Project Name: TEC 322	Landfill CCR	Pace Project Jasmine Amerin, 913-563-1403	Site Location			
Requested Due Date/TAT: 15 DAY Project Number.		Pace Profile #: 9656, 2	STATE: KS	s		
			Analysis Filtered (Y/N)	V///		
Section D Valid Matrix Codes	COLLECTED	Preservatives				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	COLLEGITE COMPOSITE COMPOSITE START PIDIGRAB PIDIGRAB	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Residual Chlorine (Y/N)	Pace Project N)01)02 002 004 004	o./ Lab I.D.
6						
7						
8						
9						
		╉╾┾┼┾┽╬┽┼┼┨┣┼┼┾┿				
12						
ADDITIONAL COMMENTS RELINQUISHED	BY / AFFILIATION DATE	TIME ACCEPTED BY / AFFILIATION	DATE TIME		SAMPLE CONDIT	ONS
() There	01. (17/2)	1530 AQUA Du	6-8-11010	ALA	5 17	V
	pm quic	15 10 10 10 Paul		[0 (0)		1
ا <u>ل</u> ۵	SAMPLER NAME AND SIGNATU	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			e ed	gt
je 1	PRINT Name of SAMPLER	R:)° ni c	ved α (Y/N) r (Y/N	N)
7 of 22	SIGNATURE of SAMPLER	R: DATE Signed (MM/DD/YY):		Temp	Recei Ice Custod	Sample (Y

Internal Transfe	r Chain o Workorder N	Df Custor Sample	by s Pre-Logged 22 Landfill CCI	into eCC)C.	Stat Cer Owr	te Of Orig t. Needed ner Receiv	in: : [ved	KS X Yes Date:	No 6/8/2021	Resul	ts Requ	Pace ested By	Analytical[®] www.pacelabs.com
Report to Subcontract To Jasmine Amerin Pace Analytical Pittsburgh Pace Analytical Kansas 1638 Roseytown Road 9608 Loiret Blvd. Suites 2,3, & 4 Lenexa, KS 66219 Greensburg, PA 15601 Phone (913)599-5665 Phone (724)850-5600								Radium-226	-228 & Total Radium			S		
Item Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	Other			ŝ	Radium					LAB USE ONLY
1 MW-1-060721	PS	6/7/2021 10:30	60372053001	Water	2 •			Х	X		· ·			001
2 MW-4-060721	PS	6/7/2021 11:15	60372053002	Water	2			Х	X					002
3 MW-5-060721	PS	6/7/2021 13:10	60372053003	Water	2			Х	X		:			003
4 MW-6-060721	PS	6/7/2021 11:35	60372053004	Water	2			Х	Х					004
5 DUP-382LF-060721	PS	6/7/2021 10:30	60372053005	Water	2			Х	Х					005
Transfers Released By 1 2 3 Conclusion Terms of the terms of terms		Date/Time	Received E	- <u>D</u> 			Date/Tim	ie <1 11.3~	Plea Use	se provide (Pittsburgh p	C shee rofile 1	omments ts. 1795.		

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Fillsburgh Lab Sample Cond	ition	opo	n R	eceipi	
Face Analytical Client Name:	Pa	ce l	N-T	Project #	
i /					12
	nt 🗆	Comm	nercial	Pace Other Label JAG-	/23
Tracking #: 5002 0648 32	44			LIMS Login TAG-	8
Custody Seal on Cooler/Box Present: Ves		no	Seal	ls intact: 🖾 yes 📋 no	ë
Thermometer Used	Туре	of Ice	: We	Blue None	s Dat
Cooler Temperature Observed Temp		- ° C	Cori	rection Factor:°C Final Temp:°C N	۳ ۲
Temp should be above freezing to 6°C				pH paper Lot# Date and initials of person examining	20
Comments:	Yes	I No	Ι N/Δ	contents: <u>r24 6-12-7</u>	
Chain of Custody Present:			1977		Ē
Chain of Custody Filed Out	1				ホー
Chain of Custody Philed Out.		1			
Sampler Name & Signature on COC:	<u> </u>	1		3.	5 3
Sample Labels metab COC:	_	17		4.	
-Includes date/time/ID Matrix:	<u>ــــــــــــــــــــــــــــــــــــ</u>	1 <u>'</u> JT		5.	
Samples Arrived within Hold Time	17	T	T	6	
Short Hold Time Analysis (<72hr remaining):				7	
Rush Turn Around Time Requested:	-			/. 8	
Sufficient Volume:				a.	
Correct Containers Lised:	17			10	
-Pace Containers Used	17				
Containers Infact:	-			11	
Orthophosphate field filtered				12	
Hex Cr Aqueous sample field filtered			/	13	
Organic Samples checked for dechlorination:	-		~	14	
Filtered volume received for Dissolved tests			1	15	
All containers have been checked for preservation.	/			16	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon)	L		
All containers meet method preservation				Initial when USMA Date/time of	
requirements.				Lot # of added	
	1	·		preservative	
Headspace in VOA Vials (>6mm):			/	17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present				Initial whom	
The Sample's Ocreaned < 0.5 million				completed: MJM Date: 6 - 1) SN: 1565	
Client Notification/ Resolution:					
Person Contacted:		<u></u>	Date/	Time: Contacted By:	
Comments/ Resolution:					
			<u>:</u>		
· · · · · · · · · · · · · · · · · · ·					
TU					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR
Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)
*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status
section of the Workorder Edit Screen.

	ł
S	÷
Pace An	ģ
/	

WO#: 30425777 PM: CAF Due Date: 06/23/21

CLIENT: PACE_60_LEKS

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	A Client Information:	Pequired	Droject Inform	nation					Secti	ion C												P	age:	4	of)
Company		Report To:	Andrew H	lare. Mel	issa Mich	nels. Sama	ntha Kar	ev	Attent	ion:	Accc	unts	Pavab	le				1						ı		
Address		Copy To:	Jared Mc	rrison la	ake Humi	nhrev lau	ra Hines		Comp	anv Nan	ne: F		SY KA	NSAS	CF	NTRA				D V/ A	OFNO					
	R18 Koppas Ave Topoka KS 66612		Melonie	Satanek	Danielie	Oberbrook	kling		Addre										ULATO	KT A	GENC	•1				
	o to Kalisas Ave, Tupeka, Ko 00012	Dumbara	Dedet No.	Jalanek,	Datmene	Oberbioed	.Kinig		Deep	Nueto								l'	NPDES		GROL	JND V	NATE	R	DRINKING	WATER
Email 10	andrew.hare@evergy.com	Purchase	JIGET NO.:						Refere	nce:									UST	1	RCRA				OTHER	
Phone:	(785) 575-8428 Fax:	Project Na	me: TEC	: 322 Lan	dfill CCR	R			Pace F Manag	roject er,	Jasn	nine A	merin	n, 913-⊧	563-	1403		Site	Locatio	n	K	s				
Request	ed Due Date/TAT: 15 DAY	Project Nu	mber:						Pace F	Profile #:	9656	, 2							STATE	E:		-	- 1			
																Requ	ested	Analy	sis Filt	ered	(Y/N)		////			
	Section D Valid Matrix C	odes	eft)		0011									2									V///			
	Required Client Information MATRIX DRINKING WATER	DW	es to I		COLL	ECTED T		Ţ.			Prese	ervatin	ves		-			┼┈┼╴			┨╌╸┨┊╍	+	<u> </u>			
	WATER WASTE WATER	WT WW	d cod	COMP	OSITE	COMPOS	ATE	CTIO															9			
	PRODUCT	P SL	e vali SRAE	514	KI	ENUIGH	AD														:	Ì	Ξ			
		WP	(G≡(1			1 CC	ERS					t a	100								ije			
	(A-Z, 0-9 / ,-) OTHER	OT	M M					MP A	AiN	ed						28	g H						R			
			Σ X					11	NO	serv			<u>a</u> l B		ŝ	n-2	3ad Sad						та П			
×.			MPL					MPL	Ъ С	SO4	ြို့	, 동	¹ 2S2	Jer 1		diul	tal di						side			
Ē			S S	DATE	TIME	DATE	TIME	SA	¥.	Σr		ĔĬŽ	žž	ō 🗋	ì	<u></u>	<u>8</u> 5						ž	Pace	Project N	o./ Lab I.D.
1	MW-1-060721		WT (A			6721	030		2		2					X	<u>×</u>							001		
2	MW-4-066721		wr G			(2/2/2)	2111	<u> </u>	2		2					X	<u> </u>	ļ						002		
3	mw-5-060721		WT G			67/2	9151		2		2			\square		12	<u> </u>	<u> </u>			ļļ.	_		003		
4	MW-6-060721		WTG			6/7/21	1135		2		2					X	<u> </u>	1						004		
5	Dup-382 LG-66672	1	wт G			(d7/2)	1630		2		121	_			L	X	<u>x</u>			\perp	:-			005		
6			<u> </u>		<u> </u>			ļ			++										<u> </u>					
7								 																		
8			_		ļ	ļ		ļ			++			<u> </u>		_		<u> </u>	_	_		_				
9						<u> </u>				<u> </u>	<u></u>	_		\downarrow	F					_	++					
10			_					ļ	<u> </u>	ļļ		_						+								M
11								<u> </u>			+-+							+					┢──┝			
12								1	<u> </u>																	
	ADDITIONAL COMMENTS		RELINQU	ISHED BY	/ AFFILIAT	ION	DATE		1	TIME				PTED B	3Y / A 7	FFILIA	TION		DATE	_	TIME		1	SAMP	LE CONDIT	ONS
			L.TH	ome	ky_		6172	21	15	30			î Ly	-4/1			Pac	د ا	<u>6-8-</u>) [015	Ŋ	A	N	<u> Y </u>	Υ
				- 1			•• •						L	l^{\prime}							:					
	· · · · · · · · · · · · · · · · · · ·								1																	
																						+				
۲ ۲					SAMPL	ER NAME A			RE												<u> </u>	-		E	deled ⇒	act
age (PRINT Nam	e of SAMP	LER	:														n 'i	eived c (Y/N)	dy Sec er (Y/I	v/N)
<u>2</u> 0 of						SIGNATUR	E of SAMP	LER	:							DATE : (MM/D	Signed					, ۲	Теп	Rece	Custor Cool	Samp ()
23					L																				_	

F-ALL-Q-020rev.08, 12-Oct-2007

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226				
Analyst:	MK1		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	6/22/2021		Sample Collection Date:	6/8/2021	
Batch ID:	61205		Sample I.D.	30425198001	
Matrix:	DW		Sample MS I.D.	30425198001MS	
			Sample MSD I.D.		
Method Blank Assessment		1	Spike I.D.:	20-032	
MB Sample ID	2185409		MS/MSD Decay Corrected Spike Concentration (pCi/mL):	32.174	
MB concentration:	0.100		Spike Volume Used in MS (mL):	0.20	
M/B Counting Uncertainty:	0.366		Spike Volume Used in MSD (mL):		
MB MDC:	0.704		MS Aliquot (L, g, F):	0.658	
MB Numerical Performance Indicator:	0.53	1	MS Target Conc.(pCi/L, g, F):	9.783	1
MB Status vs Numerical Indicator:	N/A		MSD Aliquot (L, g, F):		
MB Status vs. MDC:	Pass		MSD Target Conc. (pCi/L, g, F):		
			MS Spike Uncertainty (calculated):	0.460	1
Laboratory Control Sample Assessment	LCSD (Y or N)?	N	MSD Spike Uncertainty (calculated):		
	LCS61205	LCSD61205	Sample Result:	-0.095	
Count Date:	6/30/2021		Sample Result Counting Uncertainty (pCi/L, g, F):	0.186	
Spike I.D.:	20-032		Sample Matrix Spike Result:	11.072	
Spike Concentration (pCi/mL):	32.173		Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.613	
Volume Used (mL):	0.10	가 안 물이 들 생각이	Sample Matrix Spike Duplicate Result:		
Aliquot Volume (L, g, F):	0.652		Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		1
Target Conc. (pCi/L, g, F):	4.936		MS Numerical Performance Indicator:	1.607	1
Uncertainty (Calculated):	0.232		MSD Numerical Performance Indicator:		
Result (pCi/L, g, F):	4.329		MS Percent Recovery:	114.14%	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.904		MSD Percent Recovery:		
Numerical Performance Indicator:	-1.28		MS Status vs Numerical Indicator:	N/A	
Percent Recovery:	87.70%		MSD Status vs Numerical Indicator:	_	
Status vs Numerical Indicator:	N/A		MS Status vs Recovery:	Pass	
Status vs Recovery:	Pass		MSD Status vs Recovery:		i i
Upper % Recovery Limits:	135%		MS/MSD Upper % Recovery Limits:	136%	1
Lower % Recovery Limits:	73%		MS/MSD Lower % Recovery Limits:	/1%	
Duplicate Sample Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.:	7374192021	Enter Duplicate	Sample I.D.		
Duplicate Sample I.D.	7374192021DUP	sample IDs if	Sample MS I.D.		í I
Sample Result (pCi/L, g, F):	-0.118	other than	Sample MSD I.D.		1
Sample Result Counting Uncertainty (pCi/L, g, F):	0.231	LCS/LCSD in	Sample Matrix Spike Result:		
Sample Duplicate Result (nCi/L q E):	0.062	the space below	Matrix Spike Result Counting Uncertainty (nCi/L_g_E):	1	1

Duplicate Sample Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.: Duplicate Sample I.D. Sample Result (DCi/L, g, F): Sample Result (DCi/L, g, F): Sample Duplicate Result (DCi/L, g, F): Sample Duplicate Result (DCi/L, g, F): Sample Duplicate Result Counting Uncertainty (DCi/L, g, F): Are sample and/or duplicate results below RL?	7374192021 7374192021DUP -0.118 0.231 0.062 0.209 See Below ##	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.	Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD Duplicate Status vs RPD % RPD Limit:	-1.129 -638.16% N/A Pass 32%	7374192021 7374192021DUP	Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Chur w/30/21

M 20 21

Pace Analytical"

Page 21 of 23

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

/ iest	Ra-228				
Analyst:	VAL		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	6/23/2021		Sample Collection Date:	6/3/2021	
Worklist:	61206		Sample LD.	30425247001	教育会会教育 会会
Matrix:	ŴŤ		Sample MS I.D.	30425247001MS	- 알려가 있는 것은 것은 것은 것을 가지? 같은 것은 것은 것은 것은 것은 것은 것은 것을 것을 수 있는 것은
			Sample MSD I.D.		
Method Blank Assessment		1	Spike I.D.:	21-003	
MB Sample ID	2185412		MS/MSD Decay Corrected Spike Concentration (pCi/mL):	37.457	
MB concentration:	1.420		Spike Volume Used in MS (ml.):	0.20	, is a la chuir a ch
M/B 2 Sigma CSU:	0.515		Spike Volume Used in MSD (mL):		
MB MDC:	0.758		MS Aliquot (L. q. F):	0.794	
MB Numerical Performance Indicator:	5.41		MS Target Conc. (pCi/L, g, F):	9,438	
MB Status vs Numerical Indicator:	Fail*		MSD Aliquot (1, q, F):		
MB Status vs. MDC:	Fail*	1	MSD Target Conc. (pCi/L, g, F):		
		4	MS Spike Uncertainty (calculated):	0.462	
Laboratory Control Sample Assessment	LCSD (Y or N)?	N	MSD Spike Uncertainty (calculated):		
	LCS61206	LCSD61206	Sample Result:	0.085	
Count Date:	6/28/2021		Sample Result 2 Sigma CSU (pCi/L, g, F):	0.309	
Spike I.D.:	21-003		Sample Matrix Spike Result:	8.030	
Decay Corrected Spike Concentration (pCi/mL):	37,148		Matrix Spike Result 2 Sigma CSU (pCi/L, g, F);	1.651	
Volume Used (mL):	0.10	1993年1月1日日日日日 1993年1月1日日日日日日 1993年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	Sample Matrix Spike Duplicate Result:		
Aliquot Volume (L, a, F);	0.825		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F);		
Target Conc. (pCi/L, g, F);	4.502		MS Numerical Performance Indicator:	-1.680	
Uncertainty (Calculated):	0.221		MSD Numerical Performance Indicator:		
Result (pCi/L, q, F);	3.868		MS Percent Recovery:	84.18%	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.941		MSD Percent Recovery:		
Numerical Performance Indicator:	-1.29		MS Status vs Numerical Indicator:	Pass	
Percent Recovery:	85.91%		MSD Status vs Numerical Indicator:		
Status vs Numerical Indicator:	N/A		MS Status vs Recovery:	Pass	
Status vs Recovery:	Pass		MSD Status vs Recovery:		
Upper % Recovery Limits:	135%		MS/MSD Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	60%		MS/MSD Lower % Recovery Limits:	60%	
Duplicate Sample Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment		
				1. A.	
Sample I.D.:	30425242001	Enter Duplicate	Sample I.D.		
Duplicate Sample I.D.	30425242001DUP	sample IDs if	Sample MS I.D.		
Sample Result (pCi/L, g, F):	0.651	other than	Sample MSD I.D.		
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.381	LCS/LCSD in	Sample Matrix Spike Result:		
Sample Duplicate Result (pCi/L, g, F):	0.167	the space below.	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1	
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	0.327		Sample Matrix Spike Duplicate Result:	1	1
Are sample and/or duplicate results below RL?	See Below ##		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Duplicate Numerical Performance Indicator:	1.891	30425242001	Duplicate Numerical Performance Indicator:	1	
Duplicate RPD:	118.34%	80425242001DUP	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:		
Duplicate Status vs Numerical Indicator:	Pass	1	MS/ MSD Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:	Fail***		MS/ MSD Duplicate Status vs RPD:	1	
% RPD Limit:	36%		% RPD Limit:		1

% RPD Limit: ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

T - + 4.

D- 000

Comments:

Pace Analytical

*If the lowest activity sample in this batch is greater than ten times the blank value, the blank is acceptable; otherwise this batch must be re-prepped.

CMR laham

Ra-228 NELAC DW2 Printed: 6/29/2021 9:13 AM

Page 22 of 23

6 of 10

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

mupper

lest:	Ra-228				
Analyst:	VAL		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	6/29/2021		Sample Collection Date:		ł
Worklist:	61206	Sample I.D.		n daga na se	et din e filo i te
Matrix:	WT		Sample MS I.D.		
			Sample MSD I.D.	plant in g	
Method Blank Assessment			Spike I.D.:		
MB Sample ID	2185412		MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
MB concentration:	0.440		Spike Volume Used in MS (mL):	an an Arang	승규는 것 같아요. 집
M/B 2 Sigma CSU:	0.357		Spike Volume Used in MSD (mL):		
MB MDC:	0.714		MS Aliquot (L, g, F):		
MB Numerical Performance Indicator:	2.41		MS Target Conc.(pCi/L, g, F):		
MB Status vs Numerical Indicator:	Warning	MSD Aliquot (L, g, F):			
MB Status vs. MDC:	Pass	MSD Target Conc. (pCi/L, g, F):			
			MS Spike Uncertainty (calculated):		
Laboratory Control Sample Assessment	LCSD (Y or N)?	N	MSD Spike Uncertainty (calculated):		
	LCS61206	LCSD61206	Sample Result:		
Count Date:	#N/A	#N/A	Sample Result 2 Sigma CSU (pCi/L, g, F):		
Spike I.D.:	#N/A	#N/A	Sample Matrix Spike Result:		
Decay Corrected Spike Concentration (pCI/mL):	#N/A	#N/A	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Volume Used (mL):	461/6	#N/A	Sample Matrix Spike Duplicate Result:		
Allquot Volume (L, g, F):	#N/A	#N/A #N/A	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Lipporteinty (Colouidad)	#N/A	#IN/A	MCD Numerical Performance Indicator:		
Uncertainty (Calculated):	#N/A #N/A	#IN/A #NI/A	MSD Numerical Performance Indicator:		
I CS/I CSD 2 Sigma CSI I (nCi/L, g, F).	#Ν/Α #Ν/Δ	#IN/A	MSD Percent Recovery.		
Numerical Performance Indicator:	#N/A	#N/A	MS Status vs Numerical Indicator:		
Percent Recovery	#N/A	#N/A	MSD Status vs Numerical Indicator		
Status vs Numerical Indicator:	#N/A	#N/A	MSD Status vs Recovery:		
Status vs Recovery:	#N/A	#N/A	MSD Status vs Recovery:		
Upper % Recovery Limits:	#N/A	#N/A	#N/A MS/MSD Upper % Recovery Limits:		
Lower % Recovery Limits:	#N/A	#N/A	MS/MSD Lower % Recovery Limits:		
Duplicate Sample Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.:		Enter Duplicate	Sample I.D.		
Duplicate Sample I.D.		sample IDs if	Sample MS I.D.		
Sample Result (pCi/L, g, F):		other than	Sample MSD I.D.		
Sample Result 2 Sigma CSU (pCi/L, g, F):		LUS/LUSD IN	Sample Matrix Spike Result:		
Sample Duplicate Result (pU/L, g, F):		the space below.	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Are sample and/or duplicate results below PL2	Soo Bolow ##		Sample Matrix Spike Duplicate Result:		
Duplicate Numerical Performance Indianter	Jee Delow ##		Wath Spike Duplicate Result 2 Signa CSU (pCl/L, g, F):		
Dupicate Numerical Fenomance Indicator			(Based on the Percent Recoveries) MS/ MSD Duplicate PPD:		
Duplicate Status ve Numerical Indicator		e subative fight a	MS/ MSD Duplicate Status vo Numerical Indicatory		
Duplicate Status vs Humerical Indicato	.		MS/ MSD Duplicate Status vs Numerical Indicator.		
% RPD Limit			% RPD Limit:	1	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Pace Analytical"

#N/A

Ra-228_61206_DW_RI Ra-228 (R086-8 04Sep2019).xls

ATTACHMENT 1-3

September 2021 Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 29, 2021

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR Pace Project No.: 60380371

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on September 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Kansas City
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

AAC

Hank Kapka hank.kapka@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc. JD Schlegel, Evergy, Inc. Jacob Will, Evergy Kansas Central, Jeffrey Energy Center

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60380371001	MW-1-091321	Water	09/13/21 14:45	09/14/21 16:30
60380371002	MW-4-091321	Water	09/13/21 12:25	09/14/21 16:30
60380371003	MW-5-091321	Water	09/13/21 16:05	09/14/21 16:30
60380371004	MW-6-091321	Water	09/13/21 14:35	09/14/21 16:30
60380371005	TEC-322LF-DUP-091321	Water	09/13/21 16:15	09/14/21 16:30

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60380371001		EPA 200.7	JLH	3	PASI-K
		EPA 200.8	JGP	2	PASI-K
		EPA 245.1	VRB	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
60380371002	MW-4-091321	EPA 200.7	JLH	3	PASI-K
		EPA 200.8	JGP	2	PASI-K
		EPA 245.1	VRB	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
60380371003	MW-5-091321	EPA 200.7	JLH	3	PASI-K
		EPA 200.8	JGP	2	PASI-K
		EPA 245.1	VRB	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
60380371004	MW-6-091321	EPA 200.7	JLH	3	PASI-K
		EPA 200.8	JGP	2	PASI-K
		EPA 245.1	VRB	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
60380371005	TEC-322LF-DUP-091321	EPA 200.7	JLH	3	PASI-K

SAMPLE ANALYTE COUNT

Project:TEC 322 LANDFILL CCRPace Project No.:60380371

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 200.8	JGP	2	PASI-K
		EPA 245.1	VRB	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LDB	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	LDB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PASI-PA = Pace Analytical Services - Greensburg

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 744239

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60380371001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2981921)
 - Calcium

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 245.1

Description:245.1 MercuryClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 903.1

Description:903.1 Radium 226Client:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 904.0

Description:904.0 Radium 228Client:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: Total Radium Calculation

Description:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- MW-1-091321 (Lab ID: 60380371001)
- MW-4-091321 (Lab ID: 60380371002)
- MW-5-091321 (Lab ID: 60380371003)
- MW-6-091321 (Lab ID: 60380371004)
- TEC-322LF-DUP-091321 (Lab ID: 60380371005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:October 29, 2021

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 743926

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60380071001,60380191002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 2980224)

Chloride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

		^
No ·	60380371	

Sample: MW-1-091321	Lab ID: 603	80371001	Collected: 09/13/2	1 14:4	5 Received: 09	/14/21 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.062	mg/L	0.0050	1	09/20/21 11:52	09/22/21 20:35	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/20/21 11:52	09/22/21 20:35	7440-42-8	
Calcium, Total Recoverable	154	mg/L	0.20	1	09/20/21 11:52	09/22/21 20:35	7440-70-2	M1
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	<0.0020	ma/L	0.0020	1	09/20/21 17:15	09/22/21 14:52	7440-38-2	
Cobalt, Total Recoverable	0.0032	mg/L	0.0020	1	09/20/21 17:15	09/22/21 14:52	7440-48-4	
245.1 Mercury	Analytical Met	hod: EPA 24	5.1 Preparation Met	hod: El	PA 245.1			
-	Pace Analytica	al Services -	Kansas City					
Mercury	<0.00020	mg/L	0.00020	1	09/16/21 16:23	09/20/21 10:13	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	889	mg/L	13.3	1		09/17/21 10:58		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	.10	1		09/17/21 11:07		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	50.7	mg/L	20.0	20		09/17/21 10:40	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/17/21 10:28	16984-48-8	
Sulfate	353	mg/L	20.0	20		09/17/21 10:40	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

TEC 322 LANDFIEL

Sample: MW-4-091321	Lab ID: 60380371002 Collected: 09/13/21 12:25 Received: 09/14/21 16:30 Matrix: Water									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: Ef	PA 200.7					
	Pace Analytica	al Services -	Kansas City							
Barium, Total Recoverable	0.10	mg/L	0.0050	1	09/20/21 11:52	09/22/21 20:42	7440-39-3			
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/20/21 11:52	09/22/21 20:42	7440-42-8			
Calcium, Total Recoverable	156	mg/L	0.20	1	09/20/21 11:52	09/22/21 20:42	7440-70-2			
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8					
	Pace Analytica	al Services -	Kansas City							
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	09/20/21 17:15	09/22/21 14:57	7440-38-2			
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/20/21 17:15	09/22/21 14:57	7440-48-4			
245.1 Mercury	Analytical Met	hod: EPA 24	15.1 Preparation Met	hod: EF	PA 245.1					
	Pace Analytica	al Services -	Kansas City							
Mercury	<0.00020	mg/L	0.00020	1	09/16/21 16:23	09/20/21 10:24	7439-97-6			
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C							
	Pace Analytica	al Services -	Kansas City							
Total Dissolved Solids	1060	mg/L	13.3	1		09/17/21 10:58				
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B							
	Pace Analytica	al Services -	Kansas City							
pH at 25 Degrees C	7.2	Std. Units	s 0.10	1		09/17/21 11:04		H6		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0							
	Pace Analytica	al Services -	Kansas City							
Chloride	232	mg/L	20.0	20		09/17/21 11:04	16887-00-6			
Fluoride	0.25	mg/L	0.20	1		09/17/21 10:52	16984-48-8			
Sulfate	157	mg/L	20.0	20		09/17/21 11:04	14808-79-8			

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

	. = 0 0 = 1		 	
No.	602002	74		

Sample: MW-5-091321	Lab ID: 60380371003		Collected: 09/13/2	1 16:0	5 Received: 09	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20 al Services -	0.7 Preparation Meth Kansas City	nod: El	PA 200.7			
Barium, Total Recoverable Boron, Total Recoverable Calcium, Total Recoverable	0.026 0.64 240	mg/L mg/L mg/L	0.0050 0.10 0.20	1 1 1	09/20/21 11:52 09/20/21 11:52 09/20/21 11:52	09/22/21 20:45 09/22/21 20:45 09/22/21 20:45	7440-39-3 7440-42-8 7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica	hod: EPA 20 al Services -	0.8 Preparation Meth Kansas City	nod: El	PA 200.8			
Arsenic, Total Recoverable Cobalt, Total Recoverable	<0.0010 0.0019	mg/L mg/L	0.0010 0.0010	1 1	09/20/21 17:15 09/20/21 17:15	09/22/21 15:18 09/22/21 15:18	7440-38-2 7440-48-4	
245.1 Mercury	Analytical Met Pace Analytica	hod: EPA 24 al Services -	5.1 Preparation Meth Kansas City	nod: El	PA 245.1			
Mercury	<0.00020	mg/L	0.00020	1	09/16/21 16:23	09/20/21 10:26	7439-97-6	
2540C Total Dissolved Solids	Analytical Met Pace Analytica	hod: SM 254 al Services -	I0C Kansas City					
Total Dissolved Solids	1490	mg/L	20.0	1		09/17/21 10:58		
4500H+ pH, Electrometric	Analytical Met Pace Analytica	hod: SM 450 al Services -	00-H+B Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		09/20/21 11:32		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica	hod: EPA 30 al Services -	0.0 Kansas City					
Chloride Fluoride Sulfate	44.1 0.39 784	mg/L mg/L mg/L	20.0 0.20 100	20 1 100		09/17/21 11:51 09/17/21 11:15 09/18/21 12:46	16887-00-6 16984-48-8 14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No ·

Pace Project No.: 60380371								
Sample: MW-6-091321	Lab ID: 603	80371004	Collected: 09/13/2	1 14:3	5 Received: 09	0/14/21 16:30 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.017	mg/L	0.0050	1	09/20/21 11:52	09/22/21 20:47	7440-39-3	
Boron, Total Recoverable	0.62	mg/L	0.10	1	09/20/21 11:52	09/22/21 20:47	7440-42-8	
Calcium, Total Recoverable	292	mg/L	0.20	1	09/20/21 11:52	09/22/21 20:47	7440-70-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	09/20/21 17:15	09/22/21 15:24	7440-38-2	
Cobalt, Total Recoverable	0.0029	mg/L	0.0010	1	09/20/21 17:15	09/22/21 15:24	7440-48-4	
245.1 Mercury	Analytical Met	hod: EPA 24	15.1 Preparation Met	hod: El	PA 245.1			
	Pace Analytica	al Services -	Kansas City					
Mercury	<0.00020	mg/L	0.00020	1	09/16/21 16:23	09/20/21 10:29	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1590	mg/L	20.0	1		09/17/21 10:58		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	0.10	1		09/17/21 11:05		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	55.9	mg/L	20.0	20		09/17/21 12:15	16887-00-6	
Fluoride	0.56	mg/L	0.20	1		09/17/21 12:03	16984-48-8	
Sulfate	932	mg/L	100	100		09/18/21 13:05	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: TEC-322LF-DUP-091321	Lab ID: 603	80371005	Collected: 09/13/2	1 16:15	5 Received: 09	/14/21 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met Pace Analytic	hod: EPA 20 al Services -	00.7 Preparation Met Kansas City	hod: El	PA 200.7			
Barium, Total Recoverable Boron, Total Recoverable Calcium, Total Recoverable	0.024 0.61 232	mg/L mg/L mg/L	0.0050 0.10 0.20	1 1 1	09/20/21 11:52 09/20/21 11:52 09/20/21 11:52	09/22/21 20:50 09/22/21 20:50 09/22/21 20:50	7440-39-3 7440-42-8 7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytic	hod: EPA 20 al Services -	00.8 Preparation Met Kansas City	hod: El	PA 200.8			
Arsenic, Total Recoverable Cobalt, Total Recoverable	<0.0010 0.0019	mg/L mg/L	0.0010 0.0010	1 1	09/20/21 17:15 09/20/21 17:15	09/22/21 15:29 09/22/21 15:29	7440-38-2 7440-48-4	
245.1 Mercury	Analytical Met Pace Analytic	hod: EPA 24 al Services -	15.1 Preparation Met Kansas City	hod: El	PA 245.1			
Mercury	<0.00020	mg/L	0.00020	1	09/16/21 16:23	09/20/21 10:31	7439-97-6	
2540C Total Dissolved Solids	Analytical Met Pace Analytic	hod: SM 254 al Services -	40C Kansas City					
Total Dissolved Solids	1410	mg/L	13.3	1		09/17/21 10:59		
4500H+ pH, Electrometric	Analytical Met Pace Analytic	hod: SM 450 al Services -	00-H+B Kansas City					
pH at 25 Degrees C	6.8	Std. Units	0.10	1		09/17/21 11:09		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytic	hod: EPA 30 al Services -	00.0 Kansas City					
Chloride Fluoride Sulfate	44.9 0.39 676	mg/L mg/L mg/L	20.0 0.20 100	20 1 100		09/17/21 12:38 09/17/21 12:27 09/18/21 13:23	16887-00-6 16984-48-8 14808-79-8	

Project:	TEC 322 LANDFIL	L CCR										
Pace Project No.:	60380371											
QC Batch:	743893		Analy	sis Metho	d:	EPA 245.1						
QC Batch Method:	EPA 245.1		Analy	/sis Descri	ption:	245.1 Merc	ury					
			Labo	ratory:		Pace Analy	ical Servic	es - Kansa	s City			
Associated Lab Sar	nples: 60380371	001, 6038037100	02, 6038037	1003, 603	80371004,	603803710	05					
METHOD BLANK:	2980142			Matrix: W	ater							
Associated Lab Sar	nples: 60380371	001, 6038037100	02, 6038037	1003, 603	80371004,	603803710	05					
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Mercury		mg/L		.00020	0.0002	09/20/2	1 10:08					
LABORATORY CO	NTROL SAMPLE:	2980143										
			Spike	LC	S	LCS	% R	ес				
Parar	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Mercury		mg/L	0.00	5	0.0046	9	3 3	85-115		_		
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 2980	144		298014	5						
			MS	MSD								
		60380371001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/L	<0.00020	0.005	0.005	0.0041	0.0040	82	79	70-130	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 3	22 LANDFIL	LCCR										
Pace Project No.:	60380	371											
QC Batch:	7442	39		Anal	ysis Metho	od: I	EPA 200.7						
QC Batch Method:	EPA	200.7		Anal	ysis Desci	ription: 2	200.7 Metal	s, Total					
				Labo	oratory:	I	Pace Analy	tical Service	es - Kansas	s City			
Associated Lab Sa	mples:	603803710	001, 6038037100	02, 6038037	71003, 603	380371004,	603803710	05					
METHOD BLANK:	29819	19			Matrix: V	Vater							
Associated Lab Sa	mples:	603803710	01, 6038037100	2, 6038037	71003, 603	380371004,	603803710	05					
				Bla	nk	Reporting							
Para	meter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	6			
Barium			ma/L	<	0.0050	0.005	0 09/22/2	1 20:30					
Boron			mg/L		<0.10	0.1	0 09/22/2	1 20:30					
Calcium			mg/L		<0.20	0.2	0 09/22/2	1 20:30					
LABORATORY CO	NTROL	SAMPLE:	2981920	Snike		<u></u>	105	% R	90				
Para	meter		Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers			
Barium			ma/L		1	0.90	9	0 8	85-115		_		
Boron			mg/L		1	0.86	8	6 8	85-115				
Calcium			mg/L		10	9.2	9	2 8	85-115				
MATRIX SPIKE & I	MATRIX	SPIKE DUP	_ICATE: 2981	921		2981922							
			0000074004	MS	MSD	140	MOD		MOD	0/ D		Maria	
Deremete		Linita	60380371001	Spike Сала	Spike	MS Decult	NSD	MS % Dee	MSD % Dee	% Rec	חחח	Max	Qual
	*1	Units		CONC.	Conc.	Result	Result	70 Rec	% Rec		KPD		Qual
Barium		mg/L	0.062	1	1	0.98	0.99	91	93	70-130	1	20	
Boron		mg/L	<0.10	1	1	0.99	1.0	89	92	70-130	3	20	
Calcium		mg/L	154	10	10	160	164	68	102	70-130	2	20	IVI1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LANDFIL	CCR										
Pace Project No.:	60380371											
QC Batch:	744247		Anal	ysis Metho	d:	EPA 200.8						
QC Batch Method:	EPA 200.8		Anal	ysis Descri	ption:	200.8 MET						
			Labo	oratory:		Pace Analyt	ical Service	es - Kansas	s City			
Associated Lab Sar	mples: 603803710	01, 6038037100	2, 6038037	71003, 603	80371004,	603803710	05					
METHOD BLANK:	2981932			Matrix: W	ater							
Associated Lab Sar	mples: 603803710	01, 6038037100	2, 6038037	71003, 603	80371004,	603803710	05					
			Bla	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	3			
Arsenic		mg/L	<	0.0010	0.001	0 09/22/2	1 14:47					
Cobalt		mg/L	<	0.0010	0.001	10 09/22/2 ⁻	1 14:47					
		2081022										
LABORATORT CO	NTROL SAMPLE.	2901933	Spike	IC	s	LCS	% R	ec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Arsenic		mg/L	0.0)4	0.041	103	3 8	35-115		_		
Cobalt		mg/L	0.0)4	0.039	98	3 8	85-115				
MATRIX SPIKE & N	ATRIX SPIKE DUP	-ICATE: 2981	934		298193	5						
			MS	MSD								
_		60380371002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	a <i>i</i>
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	<0.0010	0.04	0.04	0.042	0.042	104	105	70-130	1	20	
Cobalt	mg/L	<0.0010	0.04	0.04	0.038	0.038	95	95	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LAND	FILL CCR								
Pace Project No.:	60380371									
QC Batch:	743948		Analysis Me	ethod:	SN	A 2540C				
QC Batch Method:	SM 2540C		Analysis De	escription:	25	40C Total Di	ssolved Solid	S		
			Laboratory	:	Pa	ace Analytica	Services - K	ansas	City	
Associated Lab Sa	mples: 603803	71001, 603803710	02, 60380371003,	6038037100	4, 60	380371005				
METHOD BLANK:	2980283		Matrix	k: Water						
Associated Lab Sa	mples: 603803	71001, 603803710	02, 60380371003,	6038037100	4, 60	380371005				
			Blank	Reporting	g					
Para	meter	Units	Result	Limit		Analyze	d Qu	alifiers		
Total Dissolved Sol	ids	mg/L	<5.0)	5.0	09/17/21 10):57			
LABORATORY CO	NTROL SAMPLE:	2980284								
			Spike	LCS		LCS	% Rec			
Para	meter	Units	Conc.	Result	9	% Rec	Limits	Qı	ualifiers	
Total Dissolved Sol	ids	mg/L	1000	1120		112	80-12	0		
	ATE: 2980285									
	TE. 2300203		60380049002	Dup			Max	(
Para	meter	Units	Result	Result		RPD	RPI)	Qualifiers	
Total Dissolved Sol	ids	mg/L	442	2	428		3	10		
SAMPLE DUPLICA	TE: 2980286			_						
-		11.20	60380371004	Dup		000	Max	<		
Para	meter		Result	Result		RPD		ر 	Qualifiers	
Total Dissolved Sol	ids	mg/L	1590) 1	550		3	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LANDFILL C	CR							
Pace Project No.:	60380371								
QC Batch:	744237		Analysis Meth	nod:	SM 4500-H+I	3			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH				
			Laboratory:		Pace Analytic	al Serv	rices - Kans	sas City	
Associated Lab Sa	mples: 60380371003								
SAMPLE DUPLICA	ATE: 2981913								
			60379873001	Dup			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees (<u> </u>	Std. Units	7.8		8.0	2		5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	TEC 322 LAN	NDFILL	CCR											
Pace Project No.:	60380371													
QC Batch:	743926			Analy	sis Metho	d:	EP	A 300.0						
QC Batch Method:	EPA 300.0			Analy	sis Descri	ption:	300	0.0 IC Ani	ons		0.1			
Associated Lab Sar	nnles: 6038	037100	1 6038037100	Labo	ratory:	8037100/	Pa 1 60	ce Analyti 38037100	cal Servic	es - Kans	as City			
		007100	,	2,0000007	1000, 000	0007 100-	, 00	00007100						
METHOD BLANK:	2980220				Matrix: W	ater								
Associated Lab Sar	nples: 6038	037100	1, 6038037100	2, 6038037	1003, 603	80371004 -	1, 60	38037100)5					
Parar	neter		Units	Blar Resi	nk Jit	Reporting Limit)	Analy	zed	Qualifie	ers			
Chloride			ma/l				10	00/17/21	07:30	Quant				
Fluoride			mg/L		<0.20	0	20	09/17/21	07:39					
Sulfate			ma/L		<1.0	0	1.0	09/17/21	07:39					
Canalo									01.00					
METHOD BLANK:	2981687				Matrix: W	ater								
Associated Lab Sar	nples: 6038	037100	1, 6038037100	2, 6038037	1003, 603	80371004	1, 60	38037100)5					
				Blar	nk	Reporting	ļ							
Parar	neter		Units	Resi	ult	Limit		Analy	zed	Qualifie	ers			
Chloride			mg/L		<1.0		1.0	09/18/21	12:10					
Fluoride			mg/L		<0.20	0	.20	09/18/21	12:10					
Sulfate			mg/L		<1.0		1.0	09/18/21	12:10					
LABORATORY CO		LE: 2	980221											
				Spike	LC	s		LCS	% F	Rec				
Parar	neter		Units	Conc.	Res	sult	%	6 Rec	Lim	its	Qualifiers			
Chloride			mg/L		5	4.8		95	5	90-110				
Fluoride			mg/L	2.	5	2.3		91		90-110				
Sulfate			mg/L		5	4.8		97	,	90-110				
		E 2	081688											
		LL. 2	.901000	Spike	LC	s		LCS	% F	lec				
Parar	neter		Units	Conc.	Res	sult	%	6 Rec	Lim	its	Qualifiers			
Chloride			ma/L		5	5.2		104		90-110		_		
Fluoride			mg/L	2.	5	2.6		103	3	90-110				
Sulfate			mg/L		5	5.3		106	5	90-110				
MATRIX SPIKE & M	ATRIX SPIKF	DUPI I	CATE: 2980	222		29802	23							
 -				MS	MSD		-							
		(60380071001	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	F	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	12.9	5	5	18.	1	18.1	105	10	5 80-120	0	15	
Fluoride		mg/L	0.32	2.5	2.5	2.	5	2.5	86	8	7 80-120	1	15	
Sulfate		mg/L	5.0	5	5	9.	8	9.8	97	9	7 80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

MATRIX SPIKE SAMPLE:	2980224						
		60380191002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	ND	500	484	78	80-120	M1
Fluoride	mg/L	ND	250	218	87	80-120	
Sulfate	mg/L	1200	500	1680	96	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: MW-1-091321 PWS:	Lab ID: 603803 Site ID:	71001 Collected: 09/13/21 14:45 Sample Type:	Received:	09/14/21 16:30 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg			-	
Radium-226	EPA 903.1	-0.0692 ± 0.359 (0.831) C:NA T:93%	pCi/L	09/28/21 17:38	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.624 ± 0.373 (0.690) C:74% T:90%	pCi/L	09/27/21 11:12	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.624 ± 0.732 (1.52)	pCi/L	10/07/21 15:41	7440-14-4	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: MW-4-091321 PWS:	Lab ID: 60380 Site ID:	371002 Collected: 09/13/21 12:25 Sample Type:	Received:	09/14/21 16:30 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Gervices - Greensburg				
Radium-226	EPA 903.1	-0.0863 ± 0.508 (1.13) C:NA T:76%	pCi/L	09/28/21 17:38	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.70 ± 0.545 (0.717) C:76% T:84%	pCi/L	09/27/21 11:12	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.70 ± 1.05 (1.85)	pCi/L	10/07/21 15:41	7440-14-4	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: MW-5-091321 PWS:	Lab ID: 60380: Site ID:	371003 Collected: 09/13/21 16:05 Sample Type:	Received:	09/14/21 16:30 M	fatrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.199 ± 0.391 (0.715) C:NA T:98%	pCi/L	09/28/21 17:38	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.12 ± 0.496 (0.833) C:77% T:82%	pCi/L	09/27/21 11:15	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.32 ± 0.887 (1.55)	pCi/L	10/07/21 15:41	7440-14-4	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: MW-6-091321 PWS:	Lab ID: 603803 Site ID:	71004 Collected: 09/13/21 14:35 Sample Type:	Received:	09/14/21 16:30 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	-0.230 ± 0.351 (0.921) C:NA T:95%	pCi/L	09/28/21 17:38	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.206 ± 0.380 (0.833) C:77% T:83%	pCi/L	09/27/21 11:16	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.206 ± 0.731 (1.75)	pCi/L	10/07/21 15:41	7440-14-4	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Sample: TEC-322LF-DUP-091321 PWS:	Lab ID: 6038037 Site ID:	1005 Collected: 09/13/21 16:15 Sample Type:	Received:	09/14/21 16:30 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.440 (0.931) C:NA T:95%	pCi/L	09/28/21 17:38	13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 904.0	1.15 ± 0.563 (1.01) C:76% T:77%	pCi/L	09/27/21 11:16	15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.15 ± 1.00 (1.94)	pCi/L	10/07/21 15:41	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	TEC 322 LANDFILL CCR					
Pace Project No.:	60380371					
QC Batch:	465101	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 22	28		
		Laboratory:	Pace Analytical	Services - Greensbur	g	
Associated Lab Sam	nples: 60380371001, 603803	71002, 60380371003, 6038037100	4, 60380371005			
METHOD BLANK:	2245932	Matrix: Water				
Associated Lab Sam	nples: 60380371001, 603803	71002, 60380371003, 6038037100	4, 60380371005			
Param	neter Ac	ct ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228	0.674 ± 0.35	1 (0.604) C:77% T:84%	pCi/L	09/27/21 11:12		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	TEC 322 LANDFILL CCR						
Pace Project No.:	60380371						
QC Batch:	465100		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radium-22	26		
			Laboratory:	Pace Analytical S	Services - Greensburg	g	
Associated Lab Sam	nples: 60380371	001, 603803710	02, 60380371003, 6038037100	4, 60380371005			
METHOD BLANK:	2245931		Matrix: Water				
Associated Lab Sam	nples: 60380371	001, 603803710	02, 60380371003, 6038037100	4, 60380371005			
Param	neter	Act ±	Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		-0.107 ± 0.257	(0.642) C:NA T:94%	pCi/L	09/28/21 17:38		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60380371

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60380371001	MW-1-091321	EPA 200.7	744239	EPA 200.7	74443
60380371002	MW-4-091321	EPA 200.7	744239	EPA 200.7	744443
60380371003	MW-5-091321	EPA 200.7	744239	EPA 200.7	744443
60380371004	MW-6-091321	EPA 200.7	744239	EPA 200.7	74443
60380371005	TEC-322LF-DUP-091321	EPA 200.7	744239	EPA 200.7	74443
60380371001	MW-1-091321	EPA 200.8	744247	EPA 200.8	744527
60380371002	MW-4-091321	EPA 200.8	744247	EPA 200.8	744527
60380371003	MW-5-091321	EPA 200.8	744247	EPA 200.8	744527
60380371004	MW-6-091321	EPA 200.8	744247	EPA 200.8	744527
60380371005	TEC-322LF-DUP-091321	EPA 200.8	744247	EPA 200.8	744527
60380371001	MW-1-091321	EPA 245.1	743893	EPA 245.1	744035
60380371002	MW-4-091321	EPA 245.1	743893	EPA 245.1	744035
60380371003	MW-5-091321	EPA 245.1	743893	EPA 245.1	744035
60380371004	MW-6-091321	EPA 245.1	743893	EPA 245.1	744035
60380371005	TEC-322LF-DUP-091321	EPA 245.1	743893	EPA 245.1	744035
60380371001	MW-1-091321	EPA 903.1	465100		
60380371002	MW-4-091321	EPA 903.1	465100		
60380371003	MW-5-091321	EPA 903.1	465100		
60380371004	MW-6-091321	EPA 903.1	465100		
60380371005	TEC-322LF-DUP-091321	EPA 903.1	465100		
60380371001	MW-1-091321	EPA 904.0	465101		
60380371002	MW-4-091321	EPA 904.0	465101		
60380371003	MW-5-091321	EPA 904.0	465101		
60380371004	MW-6-091321	EPA 904.0	465101		
60380371005	TEC-322LF-DUP-091321	EPA 904.0	465101		
60380371001	MW-1-091321	Total Radium Calculation	467224		
60380371002	MW-4-091321	Total Radium Calculation	467224		
60380371003	MW-5-091321	Total Radium Calculation	467224		
60380371004	MW-6-091321	Total Radium Calculation	467224		
60380371005	TEC-322LF-DUP-091321	Total Radium Calculation	467224		
60380371001	MW-1-091321	SM 2540C	743948		
60380371002	MW-4-091321	SM 2540C	743948		
60380371003	MW-5-091321	SM 2540C	743948		
60380371004	MW-6-091321	SM 2540C	743948		
60380371005	TEC-322LF-DUP-091321	SM 2540C	743948		
60380371001	MW-1-091321	SM 4500-H+B	743958		
60380371002	MW-4-091321	SM 4500-H+B	743958		
60380371003	MW-5-091321	SM 4500-H+B	744237		
60380371004	MW-6-091321	SM 4500-H+B	743958		
60380371005	TEC-322LF-DUP-091321	SM 4500-H+B	743958		
60380371001	MW-1-091321	EPA 300.0	743926		
60380371002	MW-4-091321	EPA 300.0	743926		
60380371003	MW-5-091321	EPA 300.0	743926		
60380371004	MW-6-091321	EPA 300.0	743926		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR Pace Project No.: 60380371

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60380371005	TEC-322LF-DUP-091321	EPA 300.0	743926		

Pace Analytical [*] Sample Condition Up	on Receipt	WO#:60380371
Client Name: EVERAVIS Certa	11 IN	/
Courier: FedEx UPS VIA Clay PE	EX 🗆 ECI 🗆 Pa	ce 🗆 Xroads 🗆 Client 🛣 Other 🗆
Tracking #: Pace	Shipping Label Used?	Yes 🗆 No 🗆
Custody Seal on Cooler/Box Present: Yes 🕅 No 🗆	Seals intact: Yes 🚺	No 🗆
Packing Material: Bubble Wrap □ Bubble Bags □ Thermometer Used:	ce: Vet Blue None	None D Other & OPCC
Cooler Temperature (°C): As-read 4447.0 Corr. Factor Temperature should be above freezing to 6°C 41021MH	-0.3 Corrected	<u>24.</u> <u>3.</u> <u>2</u> Date and initials of person examining contents: <u>21.071</u> <u>MUP</u>
Chain of Custody present:		
Chain of Custody relinquished:		
Samples arrived within holding time:		
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:		
Sufficient volume:	∭Yes □No □N/A	
Correct containers used:	Yes DNO DN/A	
Pace containers used:	ÓYes □No □N/A	
Containers intact:		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 10/N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	15€Yes □No □N/A	
Samples contain multiple phases? Matrix: IAA		
Containers requiring pH preservation in compliance?	DYes No N/A List	sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	D3173	
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)		
Trip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		r, /
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to C	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Tim	ne:	-
Comments/ Resolution:		
Project Manager Review:	Date	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project	t Inform	nation:					Secti Invoic	i on C e Info	; prmation	n;														F	Page:	1		of	1	
Company: EVERGY KANSAS CENTRAL, INC.	vichels, S	amantha	Kaney, D	anielle C	ber	Attent	ion:	Ad	cou	nts F	Paya	ble																			
Address: Jeffrey Energy Center (JEC)	ke Hump	ohrey, Lau	ra Hines		Comp	any N	lame:	EV	ERG	SY K	ANS	AS (CEN	TRA	AL, IN		EG	ULA.	TOR	YAC	GENO	CY									
818 Kansas Ave, Topeka, KS 66612	JD	Schle	gel, Brandon Will, Sarah Hazelwood							Se	ee Se	ectio	n A			_			٢	TNPDES 🔽 GROUND WATER T DRINKING WATER											
Email To: melissa.michels@evergy.com	Purchase Order	No.:						Pace C Refere	Quote										1	- 1	JST		٢-	RCR	A	F OTHER					
Phone: 785-575-8113 Fax:	Project Name:	TEC	322 Lan	dfill CCR				Pace F	Project	t Ha	ank I	Kapk	(a, 9	13-5	63-1	404				Site Location					1		1	100.9		18	
Requested Due Date/TAT: 7 day	Project Number							Pace F	Profile	#: 96	657,	1									STA	TE:	2.5	۲ 	(S	-			9 ⁶	10	
18																R	equ	este	d Ar	aly	sis F	ilter	red (Y/N)		T-K			11.2	TIP.R	The s
Section D Valid Matrix C Required Client Information MATRIX	CODE	(dM)		COLL	ECTED					Pr	eser	vativ	es		TN IA	N	N	N		1 1	V							100		1	a de la
DRINKING WATER WATE WASTE WASTE WASTE PRODUCT SOLLSOLD OIL WIPE AIR (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE TISSUE	st 12 8 4 ∩ 13 4 A ∩ 13 4 A ∩ 14 A ∩	SAMPLE TYPE (G=GRAB C=CO	COMP(STA) DATE	TIME	COMPOS END/GR	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄ HNO ₃	HCI	NaOH	Na ₂ S ₂ O ₃	Other	L Analysis Test	200.7 Total Metals*	200.8 Total Metals**	4500 H+B pH	300: Cl, F, SO4	20400 100	0770770					Residual Chlorine (Y/N)	(60). Pac	38 se Pro	O 3	5 7 (10./ La	6 I.D.
1 MW-1-091321	w	r G			09/13/21	14:45		6	3	3					Γ	X	x	x	x :	x);	< 🗌										
2 MW-4-091321	w	r G		(B) (09/13/21	12:25		6	3	3						x	x	x	x :	x :	×							_			
3 MW-5-091321	W	G		191	09/13/21	16:05		6	3	3						X	X	x	X :	x :	×					\square					×.
4 MW-6-091321	W	r G	581		09/13/21	14:35		6	3	3						X	x	x	x :	x]	×				_	\downarrow					
5 TEC-322LF-DUP-091321	WT G			242	09/13/21	16:15		6	3	3	3					x	x	x	x :	x []	×					\downarrow		_	_		
6															-				-						_						24
7												\square	-		1					+	_	1				+					
8															-							-			_	++					_
9		-									-		_	_	-				_	_		-				++					
10								L			-	\square	_		-	L				_	-	-		\rightarrow	-	+	· · · · · · · · · · · · · · · · · · ·	-			
11												\square			1					+	_	-	-		_	++		_			
12																				_		1	-		_						
ADDITIONAL COMMENTS	RE		ISHED BY	AFFILIAT	ION	DAT	E		TIME	_			ACC	EPTE	DBY	/ AFI	FILLA	TION	<i>[</i> .	-	DA	IE II /	11.	TIME	<u> </u>	1 11	SAI	MPLE	CONDIT	IONS	(
200.7 Total Metals*: B, Ca, Ba 200.8 Total Metals**: As, Co	_	Jase	on R. Fran	ks / SCS		9/14/	21	1	16:30	<u> </u>		1	()	U	IJ	UX.	IX	a	U	6	ΨL	1A	μĻ	15	12	11	4	+	X	12	1
						1			_						_											- //	-(-	1	_/		/
		_																	Ξ.												
age		SAMPL	SAMPLER NAME AND SIGNATURE									ka in the second se						ç	Б _		N)		Itact								
∍ 38 of 41			PRINT Name of SAMPLER: Jason R. Franks SIGNATURE of SAMPLER: R. Franks									d):			9/14/	/21			Temp in	Received Ice (Y/N		Custody Se Cooler (Y/		Samples Ir (Y/N)							

			Chern,	Ľ	ve	rG)	1 K	15	Ċe	A	α		Sam	ple C	ontai	ner C	ount	- 1	Profile #	ŧ											2
	BK Kit	oniy) 	Site:								_								Notes	la	22	uk	28=	: SI	-38	RA	Da	SI	381	2Aî,	202
Matrix	æ	NG9H	DG9H	DG9Q	VG9U	DG9U	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	BP3C	BP3Z	JGFU	NGKU	ZPLC	MeDC	DG9B				
+				_										1		2	2	1					-					-			\vdash
				<u> </u>	-											1	Í	1				T T		T							
																	-1-														
					-				-	-				-		-	1	L													
									_																						
												-					_													_	
									_																						
				_					_					-		_							_								
				-					-	_			-	_	-	_	-	_													
Codes	_			_														<u>, </u>									-				
							Co. Th						_		1		-		-	-			-	-	_						
DCOR		40ml	hisulfat		Second Second		Gla	ISS											Plastic						Misc.						
DG9B DG9H		40mL	HCL an	te clea	oa vial			WGKL		80z cle	ear soil	jar				BP1C		1L NA	OH pla	astic	_			1		Wipe/	Swab				_
DG9M		40ml	MeOH	clear	vial			WG2L	<u></u>	202 Cle	ar soil	jar				BPIN		1L HN	103 pla	astic	_			SP5T		120m	L Colif	orm Na	a Thiosu	ulfate	
DG9Q		40ml	TSP ar	nber v	vial			IGELL				jai vod or	horw	ide		DP 13		IL HZ	504 p	lastic				ZPLC		Ziploc	Bag	_	_		_
DG9S		40mL	H2SO4	ambe	er vial			AGOLI		100ml	unore	e amb				DP10			olu 7	ved pla	SUC	_		AF		Air Fill	ter				
DG9T		40mL	Na Thi	o amb	er vial			AG1H		11 HCI	ambe		or glas	3		DF 1Z		F00ml		Aceta	ie					Air Ca	ssette	S		-	
DG9U		40ml	amber	unores	served			AG1S		11 H29		ober al	200			DF20		500ml		n plast	IC			R		Terrac	core K	<u>t</u>			
VG9H		40ml	HCI cle	ar vial	1	_		AG1T		11 No.	Thiosu	lfoto ol	000/00	borg		DFZIN	_	500ml		3 plast	IC			U		Summ	na Car	í		_	
VG9T	_	40ml	Na Thi	n clea	ar vial			AG1U		1litor u	nnrog	male u		iber gi	ass	DF20	-	500ml	L HZSU	J4 plas	TIC										
VG9U		40ml		onvod	cloary	ial		ACON		FOOml	IIPICS a		yiass			DP2U		500mL	L unpre	eserved	plasti	С	_	-	_	_			_		_
BG1S		1liter F	12504	clear	alace			AG2N		500mL		ambe	r glass	5		BP2Z		500mL	L NaOl	H, Zn A	cetate						Ma	trix			
BG111		1liter	innres (ucai (giass	_		1020		2500mL	1280		er glas	iS		BP3C		250ml	L NaOl	H plast	C		-								
BG3H		250ml	HCL	lear c	1966			AG30			1250	4 amb	er glas	is .		BP3F		250mL	L HNO	3 plast	ic - field	d filtere	d	WT		Water		_		_	
BG3U	_	250ml	Unnre	s Cles	ar nlaes	2		AGSU		250ml	unpre		er glas	5		BP3N		250ml	L HNO	3 plast	C		/	SL	-	Solid					
1000		200111	- onpre	5 0100	ur giasa	3		AGALL		125ml	unpres		er glas	5		BP3U	_	250mL	_ unpre	eserved	i plasti	с		NAL		Non-a	queou	s Liqui	d		
1							ł		-	1200ml	unpres	s ambe	er glas	5		BP3S		250mL	_ H2SC	J4 plas	tic			OL		OIL	_	_			
L								-00U		TOUML	unpres	s ambe	er glas	s		BP3Z	_	250mL	_ NaOł	⊣, ∠n A	cetate			WP		Wipe	_			_	
																BP4U		125mL	_ unpre	eserved	l plasti	c		DW		Drinkir	ng Wa	ter			
																BP4N		125mL	- HNO	3 plasti	С										

PACE Analytical Services Ra-226 Analysis

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/ MSD Duplicate Status vs RPD:

% RPD Limit:

Test	Ra-226				
Analyst:	SLC		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	9/23/2021		Sample Collection Date:	9/13/2021	
Batch ID:	62796		Sample I.D.	30441751001	
Matrix:	DW		Sample MS I.D.	30441751001MS	
			Sample MSD I.D.		
Method Blank Assessment		1	Spike LD.:	20-032	
MB Sample ID	2245931		MS/MSD Decay Corrected Spike Concentration (pCi/mL):	32,170	
MB concentration:	-0.107		Spike Volume Used in MS (mL):	0.20	the state of a loss of
M/B Counting Uncertainty:	0.257		Spike Volume Used in MSD (mL);		
MB MDC:	0.642		MS Aliquot (L, g, F):	0.655	
MB Numerical Performance Indicator:	-0.82		MS Target Conc.(pCi/L, g, F):	9.827	
MB Status vs Numerical Indicator:	N/A		MSD Aliquot (L, g, F):		
MB Status vs. MDC:	Pass		MSD Target Conc. (pCi/L, g, F):		
			MS Spike Uncertainty (calculated):	0.462	
Laboratory Control Sample Assessment	LCSD (Y or N)?	N	MSD Spike Uncertainty (calculated):		
	LCS62796	LCSD62796	Sample Result:	0.180	
Count Date:	9/28/2021		Sample Result Counting Uncertainty (pCi/L, g, F):	0.312	
Spike I.D.:	20-032		Sample Matrix Spike Result:	9.201	
Spike Concentration (pCi/mL):	32.170		Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.425	
Volume Used (mL):	0.10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sample Matrix Spike Duplicate Result:		
Aliquot Volume (L, g, F):	0.661	· · · ·	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
Target Conc. (pCi/L, g, F):	4.866		MS Numerical Performance Indicator:	-1.032	
Uncertainty (Calculated):	0.229	· · ·	MSD Numerical Performance Indicator:		
Result (pCi/L, g, F):	4.970		MS Percent Recovery:	91.80%	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.127		MSD Percent Recovery:		
Numerical Performance Indicator:	0.18		MS Status vs Numerical Indicator:	N/A	
Percent Recovery:	102.15%		MSD Status vs Numerical Indicator:		
Status vs Numerical Indicator:	N/A	()	MS Status vs Recovery:	Pass	
Status vs Recovery:	Pass	· · · ·	MSD Status vs Recovery:		
Upper % Recovery Limits:	135%		MS/MSD Upper % Recovery Limits:	136%	
Lower % Recovery Limits.	1376	l	MS/MSD Lower % Recovery Limits:	/1%	
Dunlicate Sample Assessment	r	1	Natsiy Sailya Matein Sailya Dualianta Comula Association		1
Dupicate Jampie Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I D :	30440891002	Enter Duplicate	Sample I D		
Dunicate Sample I.D.	30440891002DLIP	sample IDs if	Sample I.D. Sample MS I D		
Sample Result (oCi/L, g, F)	0.226	other than	Sample MSD I D		1
Sample Result Counting Uncertainty (pCi/L, g, F);	0.391	LCS/LCSD in	Sample Matrix Spike Result:		ĺ
Sample Duplicate Result (pCi/L, g, F):	0.152	the space below.	Matrix Spike Result Counting Uncertainty (nCi/L o E):	l I	1
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F);	0.421		Sample Matrix Spike Duplicate Result:	1	
Are sample and/or duplicate results below RL?	See Below ##		Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, q, F):	1	
Duplicate Numerical Performance Indicator:	0.254	30440891002	Duplicate Numerical Performance Indicator:	1	
Duplicate RPD:	39.43%	80440891002DLIP	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	1	
Duplicate Status vs Numerical Indicator:			MS/ MSD Duplicate Status vs Numerical Indicator:	1	1

% RPD Limit: ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Duplicate Status vs RPD:

Comments:

Pace Analytical"

The sector must be re-propped due to unacceptable precision. Neglicity z msc, wh

Fall***

32%

Page 40 of 4

Ra-226_62796_DW_W (Autosaved) Ra-226_62796_DW_W (Autosaved).xis

PACE Analytical Services Ra-228 Analysis

Quality (Control Sa	ample Pe	rformance Assessment		
Pace Analytical"					
www.pacelabs.com	5		Analyst Must Manually Enter All Fields Highlighted II	<u>r Yellow.</u>	
Test:	Ra-228				<u>}</u>
Analyst:	JC2		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	9/24/2021		Sample Collection Date:	9/14/2021	
Worklist:	62797		Sample I.D.	92561269001	
Matrix:	WT		Sample MS I.D.	92561269001MS	
			Sample MSD I.D.		
Method Blank Assessment			Spike I.D.:	21-029	
MB Sample ID	2245932		MS/MSD Decay Corrected Spike Concentration (pCi/mL):	38.227	
MB concentration:	0.674		Spike Volume Used in MS (mL):	0.20	te vien koje po o
M/B 2 Sigma CSU:	0.351		Spike Volume Used in MSD (mL):		
MB MDC:	0.604		MS Aliquot (L, g, F):	0.806	
MB Numerical Performance Indicator:	3.76		MS Target Conc.(pCi/L, g, F):	9.486	
MB Status vs Numerical Indicator:	Fail*		MSD Aliquot (L, g, F):		
MB Status vs. MDC:	See Comment*		MSD Target Conc. (pCi/L, g, F):		
			MS Spike Uncertainty (calculated):	0.465	
Laboratory Control Sample Assessment	LCSD (Y or N)?	Ν	MSD Spike Uncertainty (calculated):		
	LCS62797	LCSD62797	Sample Result:	0.308	
Count Date:	9/27/2021		Sample Result 2 Sigma CSU (pCi/L, g, F):	0.351	
Spike I.D.:	21-029		Sample Matrix Spike Result:	9.101	
Decay Corrected Spike Concentration (pCi/mL):	38.061		Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.844	
Volume Used (mL):	0.10	en de la contra de	Sample Matrix Spike Duplicate Result:		
Aliquot Volume (L, g, F):	0.809		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Target Conc. (pCi/L, g, F):	4.706		MS Numerical Performance Indicator:	-0.703	
Uncertainty (Calculated):	0.231		MSD Numerical Performance Indicator:		
Result (pCi/L, g, F):	3.854		MS Percent Recovery:	92.69%	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.927		MSD Percent Recovery:		
Numerical Performance Indicator:	-1.75		MS Status vs Numerical Indicator:	Pass	
Percent Recovery:	81.89%		MSD Status vs Numerical Indicator:		
Status vs Numerical Indicator:	N/A		MS Status vs Recovery:	Pass	
Status vs Recovery:	Pass		MSD Status vs Recovery:		
Upper % Recovery Limits:	135%		MS/MSD Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	60%		MS/MSD Lower % Recovery Limits:	60%	l
	1			·	
Duplicate Sample Assessment		1	Matrix Spike/Matrix Spike Duplicate Sample Assessment		
	00440005004	Entre Duellaste	Comple 1 D		
Sample I.D.:	30440925001	Enter Duplicate	Sample I.D.		
Duplicate Sample I.D.	0 420	sample ibs if	Sample MS I.D.		1
Sample Result 2 Sigma CSI ((nCi/L, g, F).	0.429		Sample Moti I.D. Sample Matrix Spike Deput		
Sample Result 2 Sigma CSU (pCi/L, g, F).	0,300	the reace below	Matrix Spike Result 2 Sigma CSU (nCi/L g E):		
Sample Duplicate Result 2 Signa CSU (pCi/L, g, F):	0.124	ule space below.	Sample Matrix Spike Duplicate Result		
Are sample and/or duplicate results below RI 2	See Below ##		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L g F):		
Duplicate Numerical Performance Indicator	1 266	30440925001	Duplicate Numerical Performance Indicator		
Duplicate Numerical L'enormatice indicator. Dunlicate RPD:	110 30%	30440925001DUP	(Based on the Percent Recoveries) MS/ MSD Dunlicate RPD:		
Dunlicate Status vs Numerical Indicator	Pass	0020001001	MS/ MSD Duplicate Status vs Numerical Indicator:		
Duplicate Status vs Nutherical Indicator. Duplicate Status vs RPD:	Fail***		MS/ MSD Duplicate Status vs RPD		
% RPD Limit:	36%	1.	% RPD Limit:		· ·

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

AU 10/20/21

Comments:

*The method blank result is below the reporting limit for this analysis and is acceptable.

ATTACHMENT 2

Statistical Analyses
ATTACHMENT 2-1

September 2020 Semi-Annual Sampling Event Statistical Analyses

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 15, 2021 File No. 129778-039

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	September 2020 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation Completed January 15, 2021 Tecumseh Energy Center 322 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2020** semi-annual assessment monitoring groundwater sampling event for the Tecumseh Energy Center (TEC) 322 Landfill. This semi-annual assessment monitoring groundwater sampling event was completed on **September 16, 2020**, with laboratory results received and validated on **October 26, 2020**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the Groundwater Protection Standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residuals (CCR) unit (40 CFR § 257.93(f) (1-4)). The statistical method used for these evaluations, tolerance limit (TL), was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The

most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if an SSI existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The parametric TL methods were used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2020** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if an SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location (MW-4) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,*

March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2020** for all constituents except molybdenum, which was updated through **September 2020.**

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2020** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in September 2020**, no SSLs above GWPS occurred at the TEC 322 Landfill.

Tables:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION SEPTEMBER 2020 SAMPLING EVENT TECUMSEH ENERGY CENTER 322 LANDFILL

										MCL Co	mparison						Inter-we	ll Analysis	Groundwater Protection Standard			
Location Id	Frequency of Detection	Percent Non-Detects	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL § 257.95(h)(2)*	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non- Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well*	September 2020 Concentration (mg/L)	Detect?	Upper Tolerance Limit (mg/L) ¹	SSI (exceedance above Background at Individual Well)	GWPS (Higher of MCL/RSL or Upper Tolerance Limit) mg/L	Exceedance above GWPS at Individual Well	SSL
	CCR Appendix-IV: Barium, Total (mg/L)																					
MW-4 (upgradient)	16/16	0%	0.14	0.0001449	0.01204	0.1062	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.11	Y	0.137		2.0		1
MW-1	16/16	0%	0.2	0.002972	0.05451	0.4255	2.0	mg/L	N	0	0	No	No	Stable	Normal	0.073	Y		N		Ν	No
MW-5	16/16	0%	0.04	0.00004206	0.006486	0.2601	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.021	Y		N		Ν	No
MW-6	16/16	0%	0.041	0.00005612	0.007491	0.3311	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.016	Y		N		Ν	No
	CCR Appendix-IV: Cobalt, Total (mg/L)																				1	
MW-4 (upgradient)	0/16	100%	-	0	0	0	0.006	mg/L	N	0	0	NA	NA	NA	NA	0.0010	Ν	0.001		0.006		1
MW-1	12/16	25%	0.0086	0.000004176	0.002044	0.9211	0.006	mg/L	Y	1	0	Yes	No	Stable	Non-parametric	0.0014	Y		Y		Ν	No
MW-5	16/16	0%	0.0021	1.047E-07	0.0003235	0.1823	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0019	Y		Y		Ν	No
MW-6	16/16	0%	0.0033	3.265E-07	0.0005714	0.2419	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0025	Y		Y		Ν	No
					CCR Ap	pendix-IV: Fluor	ide (mg/L)															
MW-4 (upgradient)	13/17	24%	0.35	0.001453	0.03812	0.16	4.0	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.28	Y	0.350		4.0		1
MW-1	17/17	0%	0.46	0.001831	0.04279	0.1158	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.39	Y		Y		Ν	No
MW-5	14/17	18%	0.42	0.003697	0.0608	0.2118	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.32	Y		N		Ν	No
MW-6	17/17	0%	0.5	0.004853	0.06966	0.2	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.38	Y		Y		Ν	No
					CCR Apper	ndix-IV: Lithium,	Total (mg/L)															
MW-4 (upgradient)	0/16	100%		2.891E-20	1.7E-10	0.00000017	0.040	mg/L	N	0	0	NA	NA	NA	NA	0.010	Ν	0.010		0.040		1
MW-1	1/16	94%	0.01	2.891E-20	1.7E-10	0.00000017	0.040	mg/L	N	0	0	NA	NA	NA	Non-parametric	0.010	Ν		N		Ν	No
MW-5	12/16	25%	0.024	0.00002313	0.00481	0.3154	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.013	Y		Y		Ν	No
MW-6	11/16	31%	0.022	0.00001865	0.004319	0.3112	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.014	Y		Y		Ν	No
	CCR Appendix-IV: Molybdenum, Total (mg/L)																					
MW-4 (upgradient)	0/13	100%		0	0	0	0.100	mg/L	Ν	0	0	NA	NA	NA	NA	0.0010	Ν	0.001 ²		0.100		
MW-1	3/13	77%	0.0011	1.923E-09	0.00004385	0.04286	0.100	mg/L	Ν	0	0	No	No	NA	Non-parametric	0.0010	Ν		N		Ν	No
MW-5	1/13	92%	0.001	0	0	0	0.100	mg/L	N	0	0	NA	NA	NA	NA	0.0010	Ν		N		Ν	No
MW-6	6/13	54%	0.0019	6.756E-08	0.0002599	0.2283	0.100	mg/L	Ν	0	0	No	No	Stable	Non-parametric	0.0010	Ν		N		Ν	No

Notes and Abbreviations:

¹ Based on background data collected from 08/17/2016 through 03/08/2020, unless otherwise noted.

² Based on background data collected from 08/17/2016 through 09/16/2020.

* Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2) on December 23, 2020.

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed

pCi/L = picoCuries per Liter

SSI = statistically significant increase

SSL = statistically significant level

UTL = upper tolerance limits

ATTACHMENT 2-2

March 2021 Semi-Annual Sampling Event Statistical Analyses

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

July 15, 2021 File No. 129778-039

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	March 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation Completed July 15, 2021 Tecumseh Energy Center 322 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2021** semi-annual assessment monitoring groundwater sampling event for the Tecumseh Energy Center (TEC) 322 Landfill. This semi-annual assessment monitoring groundwater sampling event was completed on **March 8, 2021**, with laboratory results received and validated on **April 16, 2021**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the Groundwater Protection Standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residuals (CCR) unit (40 CFR § 257.93(f) (1-4)). The statistical method used for these evaluations, tolerance limit (TL), was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The

Evergy Kansas Central, Inc. July 15, 2021 Page 2

most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSI existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The parametric TL methods were used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2021** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

Evergy Kansas Central, Inc. July 15, 2021 Page 3

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location (MW-4) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009,* background concentrations were updated based on statistical evaluation of analytical results collected through **March 2020** for all constituents except molybdenum, which was updated through **September 2020**.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **March 2021** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in March 2021, no SSLs above GWPS occurred at the TEC 322 Landfill.**

Tables:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION MARCH 2021 SAMPLING EVENT TECUMSEH ENERGY CENTER 322 LANDFILL

										MCL Co	mparison						Inter-	well Analysis	Groundwater Protection Standard			
Location Id	Frequency of Detection	Percent Non-Detects	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL § 257.95(h)(2)*	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non- Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well*	March 2021 Concentration (mg/L)	Detect?	Upper Tolerance Limit (mg/L) ¹	SSI (exceedance above Background at Individual Well)	GWPS (Higher of MCL/RSL or Upper Tolerance Limit) mg/L	Exceedance above GWPS at Individual Well	SSL
						-		•			CCR Appendix-I	V: Barium, To	tal (mg/L)					-				
MW-4 (upgradient)	17/17	0%	0.14	0.0001557	0.01248	0.1111	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.095	Y	0.137		2.0		
MW-1	17/17	0%	0.2	0.002867	0.05354	0.4252	2.0	mg/L	N	0	0	No	No	Stable	Normal	0.091	Y		N		N	No
MW-5	17/17	0%	0.04	0.00004314	0.006568	0.2684	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.017	Y		N		N	No
MW-6	17/17	0%	0.041	0.00005387	0.007339	0.3283	2.0	mg/L	N	0	0	No	No	Decreasing	Normal	0.018	Y		N		N	No
CCR Appendix-IV: Cobalt, Total (mg/L)																						
MW-4 (upgradient)	0/17	100%	-	0	0	0	0.006	mg/L	N	0	0	NA	NA	NA	NA	0.0010	N	0.001		0.006		
MW-1	12/17	29%	0.0086	0.000004003	0.002001	0.9318	0.006	mg/L	Y	1	0	Yes	No	Stable	Non-parametric	0.0010	N		N		N	No
MW-5	17/17	0%	0.0021	1.026E-07	0.0003203	0.1821	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0015	Y		Y		N	No
MW-6	17/17	0%	0.0033	3.063E-07	0.0005535	0.2346	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0023	Y		Y		N	No
				-	-			-			CCR Appendi	x-IV: Fluoride	e (mg/L)	_			-		-			
MW-4 (upgradient)	13/18	28%	0.35	0.001449	0.03806	0.1612	4.0	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.20	N	0.350		4.0		
MW-1	17/18	6%	0.46	0.003318	0.0576	0.16	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.20	N		N		Ν	No
MW-5	14/18	22%	0.42	0.003901	0.06246	0.2213	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.20	N		N		Ν	No
MW-6	17/18	6%	0.5	0.005788	0.07608	0.2238	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.20	Ν		N		Ν	No
CCR Appendix-IV: Lithium, Total (mg/L)																						
MW-4 (upgradient)	0/17	100%		1.355E-20	1.164E-10	1.164E-08	0.040	mg/L	N	0	0	NA	NA	NA	NA	0.010	N	0.010		0.040		
MW-1	1/17	94%	0.01	1.355E-20	1.164E-10	1.164E-08	0.040	mg/L	N	0	0	NA	NA	NA	Non-parametric	0.010	N		N		N	No
MW-5	13/17	24%	0.024	0.00002331	0.004828	0.3231	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.010	Y		N		N	No
MW-6	12/17	29%	0.022	0.00001797	0.004239	0.3093	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.011	Y		Y		N	No
				-	-			-		cc	R Appendix-IV: I	/lolybdenum	, Total (mg/L)	_			-		-			
MW-4 (upgradient)	0/14	100%		0	0	0	0.100	mg/L	N	0	0	NA	NA	NA	NA	0.0010	N	0.001 ²		0.100		
MW-1	3/14	79%	0.0011	1.813E-09	0.00004258	0.04169	0.100	mg/L	N	0	0	No	No	NA	Non-parametric	0.0010	N		N		N	No
MW-5	1/14	93%	0.001	0	0	0	0.100	mg/L	N	0	0	NA	NA	NA	NA	0.0010	N		N		N	No
MW-6	6/14	57%	0.0019	6.374E-08	0.0002525	0.2237	0.100	mg/L	N	0	0	No	No	Stable	Non-parametric	0.0010	Ν		N		N	No

Notes and Abbreviations:

¹ Based on background data collected from 08/17/2016 through 03/08/2020, unless otherwise noted.

² Based on background data collected from 08/17/2016 through 09/16/2020.

* Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed

pCi/L = picoCuries per Liter

SSI = statistically significant increase

SSL = statistically significant level

UTL = upper tolerance limits