2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

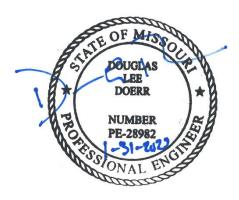
Presented To: Evergy Missouri West, Inc.

SCS ENGINEERS

27213169.22 | January 2023

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

2022 Groundwater Monitoring and Corrective Action Report

Revision Number	Revision Date	Revision Sections	Summary of Revisions
0	January 31, 2023	NA	Original

Table of Contents

Sect	ion		Pag	ge
CERT	IFICA	TIONS.		i
1			TON	
	1.1	§ 257	'.90(e)(6) Summary	1
		1.1.1	§ 257.90(e)(6)(i) Initial Monitoring Program	1
		1.1.2		
		1.1.3		
		1.1.4		
		1.1.5	§ 257.90(e)(6)(v) Selection of Remedy	2
		1.1.6	§ 257.90(e)(6)(vi) Remedial Activities	2
2	§ 25	7.90(e) ANNUAL REPORT REQUIREMENTS	3
	2.1	§ 257	7.90(e)(1) Site Map	3
	2.2	§ 257	'.90(e)(2) Monitoring System Changes	3
	2.3	§ 257	7.90(e)(3) Summary of Sampling Events	3
	2.4	§ 257	'.90(e)(4) Monitoring Transition Narrative	4
	2.5	§ 257	'.90(e)(5) Other Requirements	4
		2.5.1	§ 257.90(e) Program Status	4
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency.	5
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	5
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequence	•
				5
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater	_
			Protection Standards	
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	6
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective	6
	2.6	S 0E7	Measures	
3	2.6	-	'.90(e)(6) Overview Summary	
ა 4			OMMENTS	
4	GEIN	ERAL C	OIVIIVIEN 13	0
_				
App	endi	ces		
Appe			gures	
	Fig	ure 1:	Site Map	
	Fig	ure 2:	Potentiometric Surface Map (May 2022)	
	Fig	ure 3:	Potentiometric Surface Map (November 2022)	
Appe	ndix E	3 Ta	ables	
-	Tal	ble 1: /	Appendix III Detection Monitoring Results	
	Tal	ble 2: I	Detection Monitoring Field Measurements	
Appe	ndix (C Al	ternative Source Demonstrations	

C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2022).

2022 Groundwater Monitoring and Corrective Action Report

- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2022).
- **Appendix D** Laboratory Analytical Reports
- **Appendix E** Statistical Analyses
 - E.1 Spring 2021 Semiannual Detection Monitoring Statistical Analyses, Revision 1
 - E.2 Fall 2021 Semiannual Detection Monitoring Statistical Analyses
 - E.3 Spring 2022 Semiannual Detection Monitoring Statistical Analyses

1 INTRODUCTION

This 2022 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Missouri West, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station.

1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2022), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2022), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

Monitoring Event	Monitoring Well	Constituent	ASD
Fall 2021	MW-505	Total Dissolved Solids	Successful
Fall 2021	MW-506	Chloride	Successful
Fall 2021	MW-506	Sulfate	Successful
Fall 2021	MW-512	Chloride	Successful
Fall 2021	MW-512	Sulfate	Successful

Monitoring Event	Monitoring Well	Constituent	ASD
Fall 2021	MW-512	Total Dissolved Solids	Successful
Spring 2022	MW-506	Chloride	Successful
Spring 2022	MW-506	Sulfate	Successful

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(e)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(e)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2022.

2.3 § 257.90(e)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2022). Samples collected in 2022 were collected and analyzed for Appendix III detection monitoring constituents. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include Fall 2021 semiannual detection monitoring event verification sample data collected and analyzed in 2022; Spring 2022 semiannual detection monitoring data, and verification sample data; and, the initial Fall 2022 semiannual detection monitoring data. The

dates of sample collection and the monitoring program requiring the sample are also provided in these tables.

2.4 § 257.90(e)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2022. Only detection monitoring was conducted in 2022.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2021 verification sampling and analyses per the certified statistical method.
- b. completion of the statistical evaluation of the Fall 2021 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2021 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2021 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2022 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2022 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. initiation of the Fall 2022 semiannual detection monitoring sampling and analysis event, and
- h. completion of a successful alternative source demonstration for the Spring 2022 semiannual detection monitoring sampling and analysis event.

2022 Groundwater Monitoring and Corrective Action Report

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2023).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2022 detection monitoring sampling and analysis event; and, if required, alternative source demonstration(s). Semiannual Spring and Fall 2023 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2023 detection monitoring sampling and analysis event; and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included in **Appendix C**:

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2022).
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2022).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority

stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.6 § 257.90(e)(6) OVERVIEW SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

3 SUPPLEMENTAL INFORMATION AND DATA

In addition to the requirements listed in 40 CFR 257.90(e), supplemental information has been included in this section in recognition of comments received by Evergy from the USEPA on January 11, 2022. The USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided with in this GWMCA report. This supplemental information and data are provided as specified below:

• Laboratory Analytical Reports (Appendix D):

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- February 2022 First verification sampling for the Fall 2021 detection monitoring event.
- March 2022 Second verification sampling for the Fall 2021 detection monitoring event.
- May 2022 Spring 2022 semiannual detection monitoring sampling event.
- July 2022 First verification sampling for the Spring 2022 detection monitoring sampling event.
- August 2022 Second verification sampling for Spring 2022 detection monitoring sampling event.
- November 2022 Fall 2022 semiannual detection monitoring sampling event.

Statistical Analyses (Appendix E):

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2022 included the following:

2022 Groundwater Monitoring and Corrective Action Report

- o Spring 2021 semiannual detection monitoring statistical analyses, revision 1.
- o Fall 2021 semiannual detection monitoring statistical analyses.
- Spring 2022 semiannual detection monitoring statistical analyses.
- Groundwater Potentiometric Surface Maps (Appendix A):

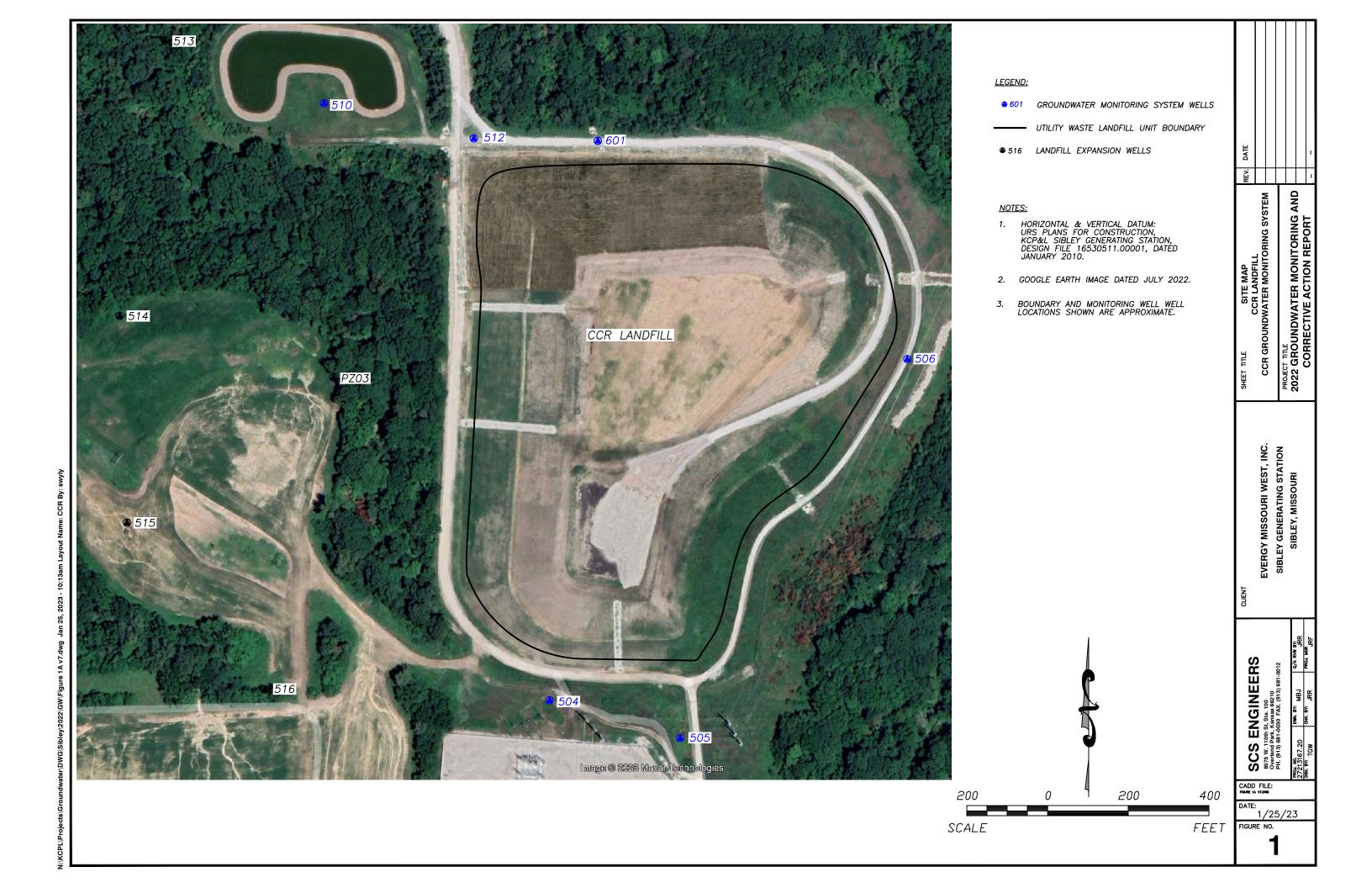
Includes revised groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o Figure 2 Spring 2022 semiannual detection monitoring sampling event.
- Figure 3 Fall 2022 semiannual detection monitoring sampling event.

4 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Sibley Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc., for specific application to the Sibley Generating Station CCR Landfill. No warranties, express or implied, are intended or made.


APPENDIX A

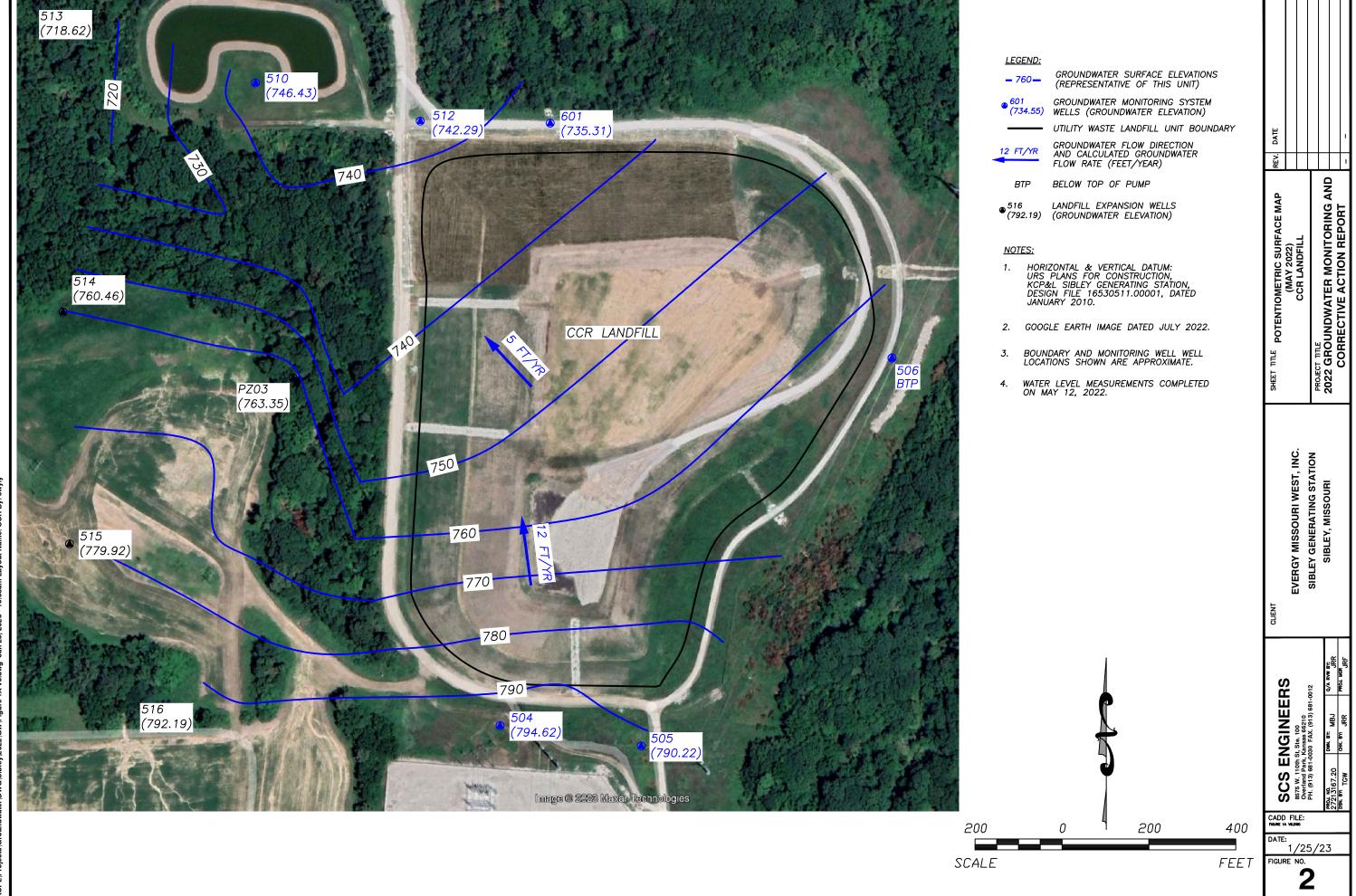

FIGURES

Figure 1: Site Map

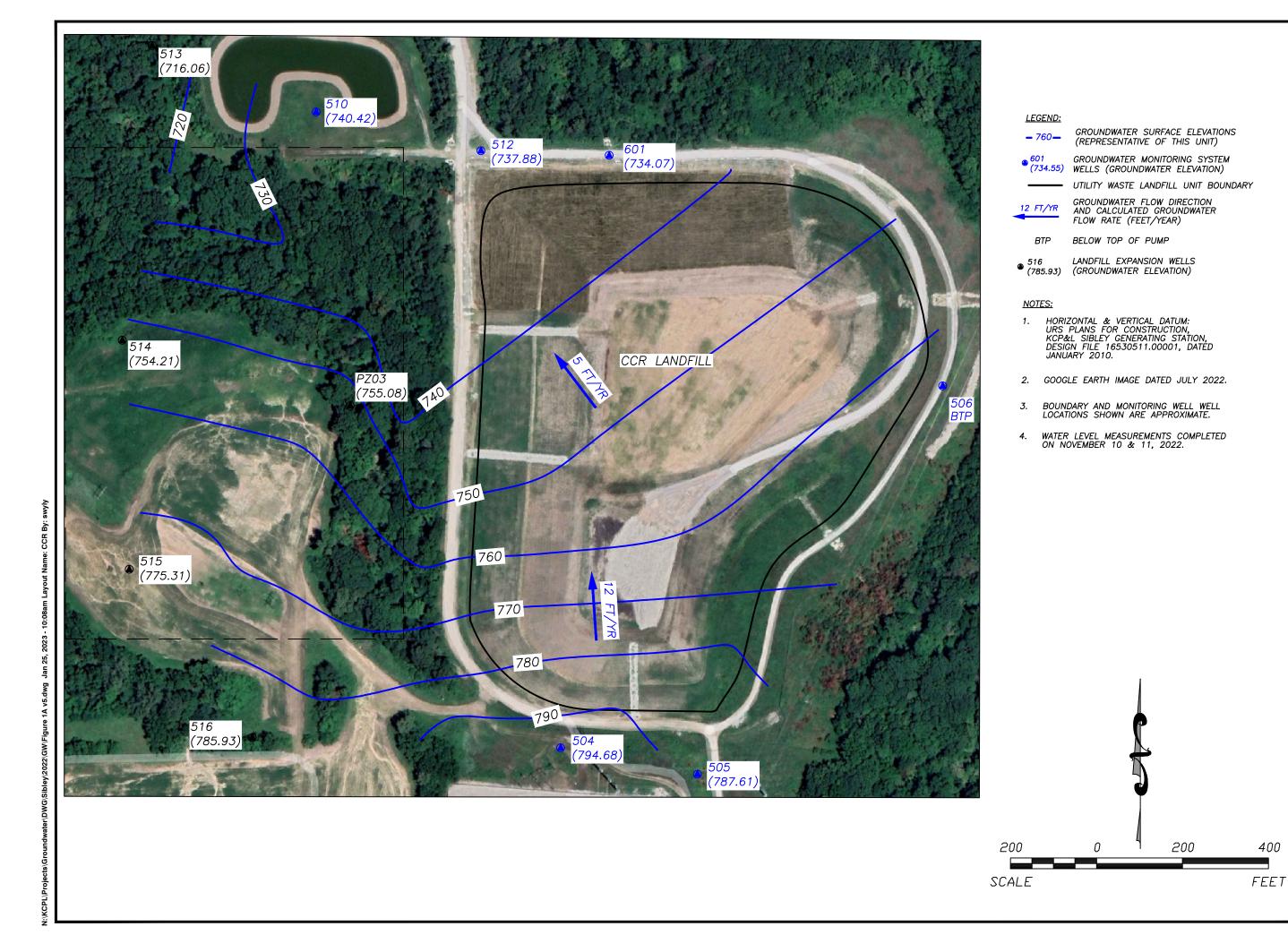

Figure 2: Potentiometric Surface Map (May 2022)

Figure 3: Potentiometric Surface Map (November 2022)

ects\Groundwater\DWG\Sibley\2022\GW\Figure 1A v6.dwg Jan 25, 2023 - 10:05am Layout Name: CCR By: s

ROJECT TITE
2022 GROUNDWATER MONITORING
AND CORRECTIVE ACTION REPORT EVERGY MISSOURI WEST, INC. SIBLEY GENERATING STATION SIBLEY, MISSOURI SCS ENGINEERS
675 W. 1101 B. 18t. 100
675 W. 1101 B. 18t. 100
0 overland Park, Kansas 66210
PH. (913) 681-0030 FAX. (913) 681-0012 CADD FILE: DATE: 1/25/23 FIGURE NO. 3

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results
Table 2: Detection Monitoring Field Measurements

Table 1 CCR Landfill Appendix III Detection Monitoring Results Evergy Sibley Generating Station

		Appendix III Constituents						
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	pH (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-504	5/12/2022	<0.200	28.7	<1.00	0.168	6.43	29.1	171
MW-504	11/10/2022	<0.200	34.6	<1.00	<0.150	6.58	27.4	168
MW-505	2/1/2022					**6.72		*182
MW-505	3/2/2022					**7.01		*185
MW-505	5/12/2022	<0.200	28.9	1.20	0.162	6.58	27.2	182
MW-505	7/15/2022					*7.15	*14.0	*180
MW-505	11/10/2022	<0.200	32.9	1.17	<0.150	6.77	23.8	183
MW-506	2/1/2022			*7.96		**7.09	*92.9	
MW-506	3/2/2022			*8.10		**7.11	*92.9	
MW-506	5/12/2022	<0.200	89.4	8.39	0.284	7.35	99.0	463
MW-506	7/15/2022			*8.50		**7.31	*102	
MW-506	8/18/2022			*12.5		**7.57	*95.5	
MW-506	11/10/2022	<0.200	96.2	9.81	0.229	6.44	96.8	446
MW-510	2/1/2022					**7.03	*14.4	
MW-510	5/12/2022	<0.200	111	3.35	0.285	6.83	15.0	475
MW-510	11/10/2022	<0.200	120	3.99	0.229	7.08	19.7	468
MW-512	2/1/2022		*110	*9.14		**7.00	*104	*516
MW-512	3/2/2022			*6.61		**6.83	*86.8	*513
MW-512	5/12/2022	<0.200	111	8.66	0.264	6.89	112	548
MW-512	7/15/2022			*3.71		**7.78	*11.7	*394
MW-512	11/10/2022	<0.200	118	9.69	0.195	6.97	115	510
MW-601	5/12/2022	<0.200	100	3.64	0.237	6.84	13.1	394
MW-601	11/10/2022	<0.200	97.4	4.03	0.189	7.02	14.2	383

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure mg/L - miligrams per liter

⁻⁻⁻ Not Sampled

Table 2 CCR Landfill Detection Monitoring Field Measurements Evergy Sibley Generating Station

Well Number	Sample Date	pH (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-504	5/12/2022	6.43	678	22.35	0.0	54	0.00	21.70	794.62
MW-504	11/10/2022	6.58	276	15.23	0.0	79	2.02	21.64	794.68
MW-505	2/1/2022	**6.72	280	12.14	0.0	151	3.45	28.86	786.11
MW-505	3/2/2022	**7.01	307	15.69	0.0	124	3.90	28.78	786.19
MW-505	5/12/2022	6.58	300	17.35	0.0	186	3.32	24.75	790.22
MW-505	7/15/2022	*7.15	256	25.02	0.0	158	8.33	25.38	789.59
MW-505	11/10/2022	6.77	299	13.95	0.0	147	3.20	27.36	787.61
MW-506	2/1/2022	**7.09	736	11.22	0.0	142	4.40	BTP	NA
MW-506	3/2/2022	**7.11	861	17.28	8.0	127	4.09	BTP	NA
MW-506	5/12/2022	7.35	1410	23.45	0.0	17	3.25	BTP	NA
MW-506	7/15/2022	**7.31	1410	27.45	0.0	13	3.25	BTP	NA
MW-506	8/18/2022	**7.57	786	19.32	0.0	12	4.54	BTP	NA
MW-506	11/10/2022	6.44	750	16.40	4.5	149	5.36	BTP	NA
MW-510	5/12/2022	6.83	889	18.10	0.0	168	3.73	39.36	746.43
MW-510	11/10/2022	7.08	866	16.96	0.0	147	3.77	45.37	740.42
MW-512	2/1/2022	**7.00	854	10.66	0.0	-25	4.20	31.18	738.95
MW-512	3/2/2022	**6.83	975	13.80	18.4	121	2.83	31.44	738.69
MW-512	5/12/2022	6.89	889	19.27	0.0	166	0.00	27.84	742.29
MW-512	7/15/2022	**7.78	651	27.85	0.0	141	5.15	44.38	725.75
MW-512	11/10/2022	6.97	877	14.30	0.0	165	0.00	32.25	737.88
MW-601	5/12/2022	6.84	1260	20.68	0.0	-37	0.00	45.59	735.31
MW-601	11/10/2022	7.02	717	16.27	8.5	18	0.92	46.83	734.07

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

 μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

BTP - Below Top of Pump

Sibley Generating Station - CCR Landfill Page 1 of 1

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATIONS

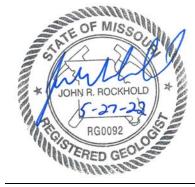
- C.1 Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2022)
- C.2 Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2022)

APPENDIX C.1						
Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2022)						

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2021 GROUNDWATER MONITORING EVENT

CCR LANDFILL

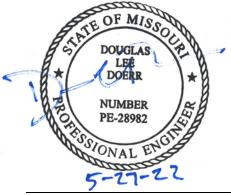
Sibley Generating Station Evergy Missouri West, Inc. Sibley, Missouri


SCS ENGINEERS

May 2022 File No. 27213169.22

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	ction		Page
CER	TIFICATION	ONS	i
1	Regula	atory Framework	1
2	Statist	ical Results	1
3	Altern	ative Source Demonstration	2
	3.1	Time Series Plots	2
	3.2	Trend Analysis	3
	3.3 I	Piper Diagram Plots	4
	3.4	Stiff Diagrams	5
	3.5 I	Box and Whiskers Plots	5
	3.6 I	Binary Plots	6
4	Conclu	ısion	6
5	Genera	al Comments	7
Αp	pend	ices	
App	endix A	Figure 1	
App	endix B	Time Series Plots	
App	endix C	Trend Analysis	
App	endix D	Piper Diagram Plots and Analytical Results	
App	endix E	Stiff Diagrams and Analytical Results	
App	endix F	Box and Whiskers Plots	
App	endix G	Binary Plots	

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 15, 2021. Review and validation of the results from the November 2021 Detection Monitoring Event was completed on January 7, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 1, 2022 and March 2, 2022.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit established for upgradient monitoring well MW-505, two Appendix III constituents above their respective prediction limits established for monitoring well MW-506, and three Appendix III constituents above their respective prediction limits established for monitoring well MW-512.

Monitoring Well Constituent	*UPL	Observation November 15, 2021	1st Verification February 1, 2022	2nd Verification March 2, 2022
MW-505				
Total Dissolved Solids	180.3	181	182	185
MW-506				
Chloride	7.578	7.78	7.96	8.10
Sulfate	76.83	89.8	92.9	92.9
MW-512				
Chloride	5.094	9.69	9.14	6.61

1

Monitoring Well Constituent	*UPL	Observation November 15, 2021	1st Verification February 1, 2022	2nd Verification March 2, 2022
Total Dissolved Solids	466.4	527	516	513
Sulfate	44.8	93.1	104	86.8

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified six SSIs above the background prediction limits. These include total dissolved solids (TDS) at upgradient monitoring well MW-505, chloride and sulfate at monitoring well MW-506, and chloride, TDS, and sulfate at monitoring well MW-512.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for chloride in monitoring wells MW-506 and MW-512 were compared to time series plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Side-gradient and up-gradient monitoring wells are considered to represent natural groundwater since they could not have been impacted by the landfill due to the direction of groundwater travel in relation to the location of the landfill. The comparisons indicate the chloride concentrations increased in non-CCR monitoring system gradient/side-gradient wells MW-515 and MW-516 and the concentrations in MW-506 and MW-512 are near the concentration levels for natural groundwater as represented by the upgradient/side-gradient monitoring wells in the vicinity of the CCR Landfill and that natural groundwater chloride concentrations can fluctuate naturally within upgradient/side-gradient wells such as MW-515 and MW-516.

The time series plots for TDS in upgradient monitoring well MW-505 and MW-512 were compared to time series plots for TDS in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. TDS comparisons indicate the concentrations in both MW-505 and MW-512 are within or near the range of concentration levels for natural groundwater in the vicinity of the CCR Landfill.

Time series plots for sulfate in monitoring wells MW-506 and MW-512 were compared to time series plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 and MW-512 are within or very near the range of concentration levels for upgradient/side-gradient groundwater in the vicinity of the CCR Landfill; specifically MW-515. Additionally, there has been increasing concentrations of sulfate in upgradient well MW-504 and large variations of concentrations in MW-515, both of which represent natural groundwater conditions.

Figure 1 in **Appendix A** shows these upgradient and side/gradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit variability that includes concentrations within the range or similar to those seen in MW-505, MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs could have resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix B**.

3.2 TREND ANALYSIS

Trend analysis was performed to evaluate for statistically significant trends utilizing Sen's Slope/Mann-Kendall Statistical Analysis. Sen's Slope/Mann-Kendall statistical analysis is used to determine if the data exhibits an SSI or statistically significant decreasing (SSD) trend. A trend is the general increase or decrease in observed values of a variable over time. A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend. The Mann-Kendall test is nonparametric, meaning that it does not depend on an assumption of a particular underlying distribution. The test uses only the relative magnitude of data rather than actual values. Therefore, missing values are allowed, and values that are recorded as non-detects by the laboratory can still be used in the statistical analysis by assigning values equal to half their detection limits. Sen's Slope is a simple nonparametric procedure developed to estimate the true slope. The advantage of this method over linear regression is that it is not greatly affected by gross data errors or outliers, and can be computed when data are missing.

The Sen's Slope/Mann-Kendall Statistical Analysis was performed at the 98 percent confidence level utilizing the statistical program Sanitas[™]. Chloride data from December 2015 through the most recent data for upgradient and side-gradient non-CCR monitoring system well MW-516 and downgradient wells MW-506 and MW-512 were used to perform trend analysis. The trend analysis for chloride indicates upgradient/side-gradient well MW-516 has a positive slope (i.e. increasing trend but not statistically significant) and concentrations near that of MW-506 and MW-512. Since this upgradient/side-gradient well shows a positive concentration slope and a concentration range similar to MW-506 and MW-512 and represents natural conditions, it is also likely the downgradient wells increased similarly due to natural conditions.

TDS data from December 2015 through the most recent data for upgradient and side-gradient non-CCR monitoring system wells MW-504, MW-505 and MW-515 and downgradient well MW-512 were used to perform trend analysis. The trend analysis for TDS indicates upgradient well MW-505 and downgradient well MW-512 both have increasing trends and upgradient well MW-504 and upgradient/side-gradient

non-CCR well MW-515 both have positive slopes (i.e. increasing trend but not statistically significant). This indicates that natural groundwater has increasing trends or positive concentration slopes. Additionally, the concentration range for MW-512 is within the total range for MW-515. Since these upgradient and side-gradient wells show an increasing trend or positive concentration slope, it is also likely that downgradient wells increased similarly due to natural conditions.

Sulfate data from December 2015 through the most recent data for upgradient wells MW-504 and MW-505 and downgradient wells MW-506 and MW-512 were used to perform trend analysis. The trend analysis for sulfate indicates upgradient well MW-504 and downgradient wells MW-506 and MW-512 have increasing trends. Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient wells increased similarly due to natural conditions.

These trend analyses demonstrate that a source other than the CCR Landfill caused the SSIs over the background level for calcium, chloride, TDS and sulfate or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Trend analyses are provided in **Appendix C**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A Piper diagram generated for upgradient wells MW-504 and MW-505, downgradient wells MW-506 and MW-512, and landfill leachate is provided in **Appendix D** along with analytical results. The Piper diagram indicates the groundwater from these four wells have similar geochemical characteristics and do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate) and that both upgradient and downgradient groundwater characteristics are different from the leachate. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels in MW-505, MW-506, and MW-512, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.4 STIFF DIAGRAMS

Stiff diagrams are a graphical method commonly used to portray water compositions and facilitate the interpretation and presentation of chemical analysis. They visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

Stiff diagrams are calculated in terms of milliequivalents and take into account ionic charge and the formula weight for major ions, specifically Sodium (Na) plus Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3). The milliequivalents per liter of the cation and anions are plotted across from each other along a central vertical line and the distance from the center line is the value for each constituent.

Stiff diagrams were prepared for MW-505, MW-506 and MW-512 alongside Stiff diagrams calculated for leachate and are provided in **Appendix E**. The Stiff diagrams indicate the groundwater from these three wells have similar geochemical characteristics and do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate stiff diagram shapes are dis-similar indicating there is no mixing of the two types of water (groundwater and leachate) and that both upgradient and downgradient groundwater characteristics are different from the leachate. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels in MW-505, MW-506, and MW-512, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.5 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

The box and whiskers plot for chloride in monitoring wells MW-506 and MW-512 were compared to box and whisker plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the concentrations in MW-506 and MW-512 are generally within expected concentration levels for natural groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for TDS in monitoring wells MW-505 and MW-512 were compared to box and whisker plots for TDS in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. TDS comparisons indicate the concentrations in MW-505 and MW-512 are generally within expected concentration levels for natural groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for sulfate in monitoring wells MW-506 and MW-512 were compared to box and whisker plots for sulfate in upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 and MW-512 are generally within the range of concentration levels for natural groundwater as represented by upgradient and side-gradient monitoring wells in the vicinity of the CCR Landfill; specifically MW-515.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit natural variability that includes concentrations similar to those seen in MW-505, MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix F**.

3.6 BINARY PLOTS

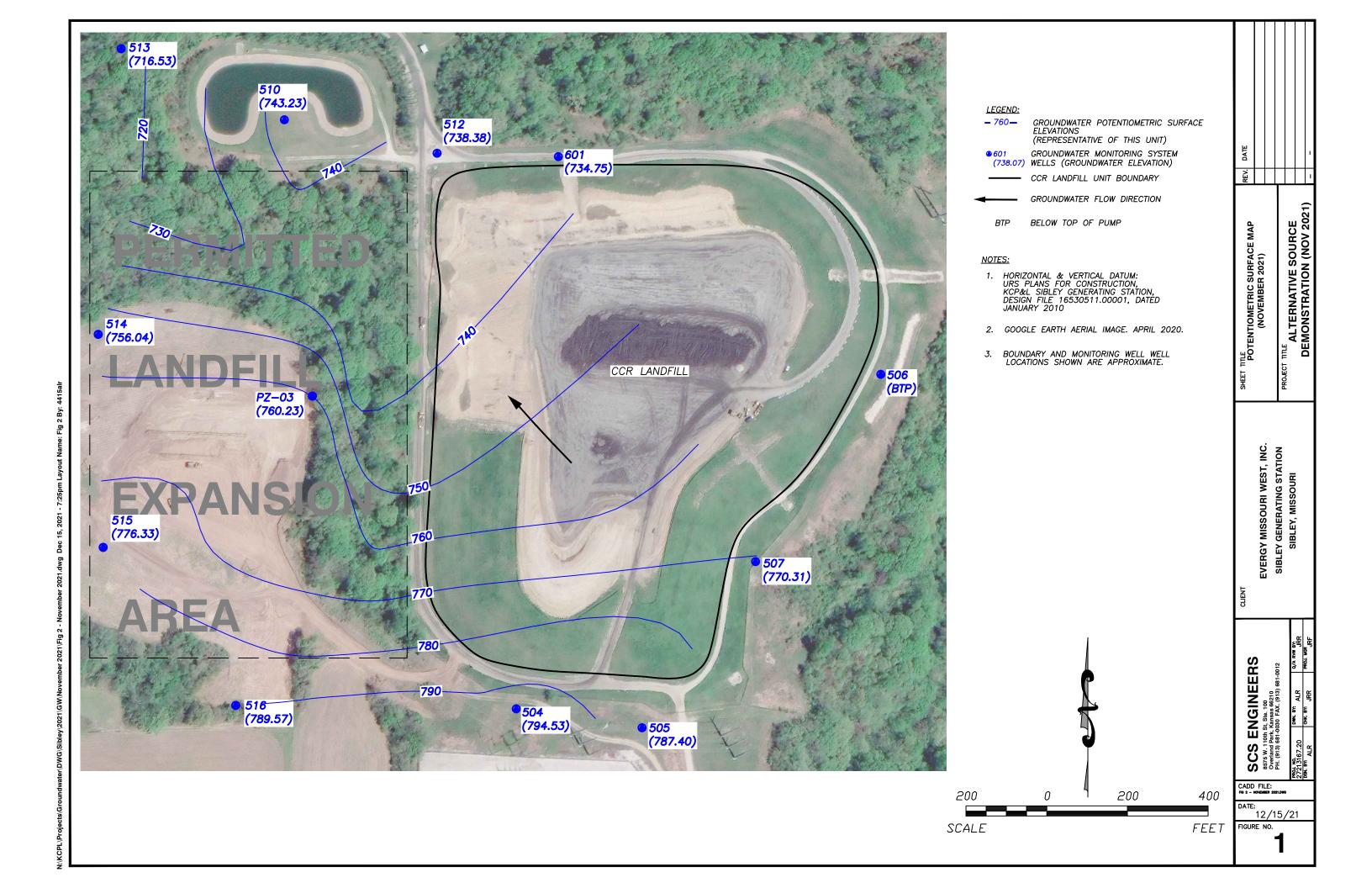
Binary plots are another way to visualize data and allow evaluation of mixing of various waters. Binary plots for the monitoring wells and leachate were prepared for pairs of highly mobile constituents. These include chloride - sulfate, boron - sulfate, and boron - chloride. The chloride - sulfate plot identifies the mixing zone between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the data for the downgradient wells would fall within the mixing zone on the plot; however, the data for the downgradient wells falls below the mixing zone. The boron – sulfate and boron - chloride plots identify the mixing line between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the sulfate – boron and chloride – boron data for MW-506 and MW-512 would fall on the mixing line and the boron concentrations would range from 0.20 mg/L to 1.65 mg/L based on the sulfate mixing line and approximately 0.83 mg/L to 4.6 mg/L based on the chloride mixing line. However, the boron in downgradient wells was not detected at a concentration above the reporting limit of 0.2 mg/L. Therefore, because boron is present in the leachate but is not present in the downgradient wells, leachate is not mixing with groundwater.

These binary plots demonstrate that leachate is not mixing with upgradient groundwater and that a source other than the CCR Landfill caused the SSI over the background level for sulfate or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Binary plots are provided in **Appendix G**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over the background level, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based

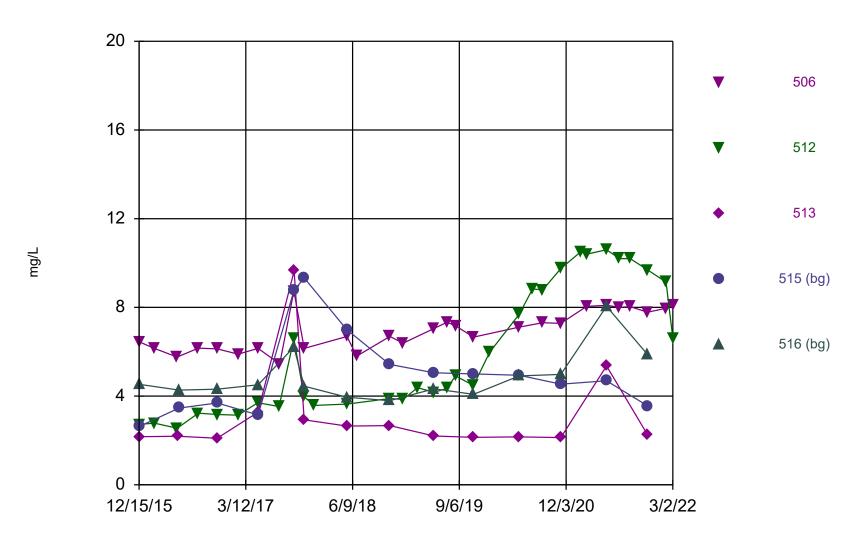
on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc. for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

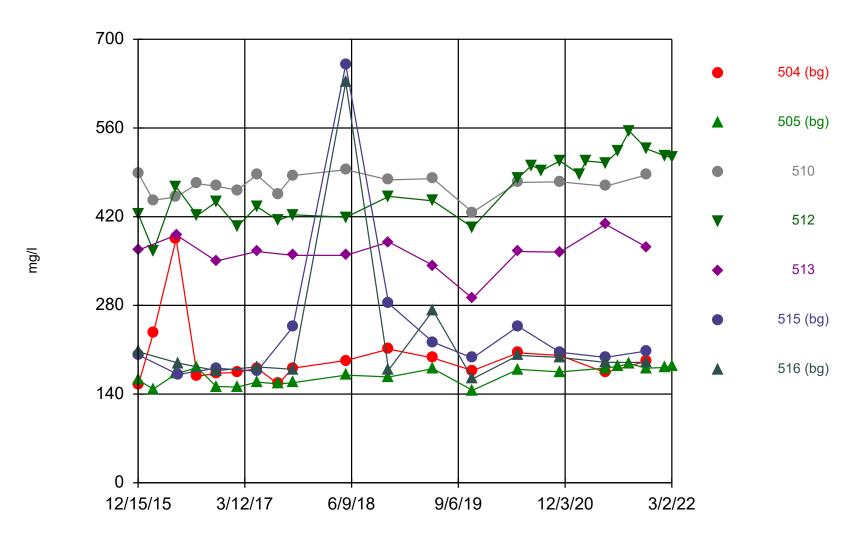

Figure 1

Appendix B

Time Series Plots

Time Series

Constituent: Chloride Analysis Run 5/16/2022 12:15 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

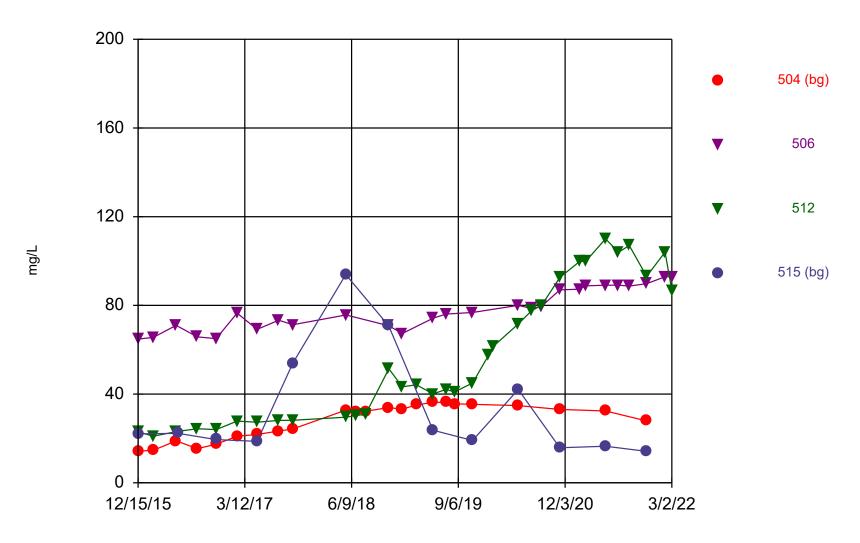

Time Series

Constituent: Chloride (mg/L) Analysis Run 5/16/2022 12:16 PM View: LF III

Sible	ev Client: SCS Enginee	ers Data: Sibley

	506	512	513	515 (bg)	516 (bg)
12/15/2015	6.45	2.72	2.17	2.63	4.53
2/18/2016	6.15	2.78			
5/25/2016	5.76	2.55			
5/26/2016			2.19		
6/2/2016				3.46	4.27
8/23/2016	6.16	3.23			
11/11/2016	6.13	3.17	2.1	3.69	4.31
2/8/2017	5.89	3.14			
5/3/2017		3.7	3.27		
5/4/2017	6.15			3.15	4.51
8/1/2017		3.53			
8/4/2017	5.45				
10/3/2017	8.74	6.59		8.75	6.21
10/4/2017			9.64		
11/16/2017	6.15	3.97	2.93	9.33	4.45
12/28/2017		3.58			
5/16/2018				7	3.95
5/17/2018	6.69	3.64	2.65		
6/27/2018	5.8				
11/14/2018				5.43	3.79
11/15/2018	6.69	3.89	2.67		
1/11/2019	6.39	3.85			
3/12/2019		4.38			
5/22/2019	7.05	4.17	2.2	5.05	4.33
7/16/2019	7.33	4.35			
8/21/2019	7.17	4.91			
11/6/2019	6.66	4.48	2.14	5	4.08
1/13/2020		5.97			
5/18/2020	7.11	7.69	2.16	4.94	4.91
7/14/2020		8.83			
8/26/2020	7.31	8.79			
11/11/2020	7.28	9.75	2.13	4.54	4.98
2/3/2021		10.5			
3/1/2021	8.05	10.4			
5/24/2021	8.09	10.6	5.36	4.69	8.05
7/19/2021	8.01	10.2			
9/2/2021	8.03	10.2			
11/15/2021	7.78	9.69	2.25	3.56	5.87
2/1/2022	7.96	9.14			
3/2/2022	8.1	6.61			

Time Series


Constituent: Dissolved Solids Analysis Run 5/16/2022 11:31 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Time Series

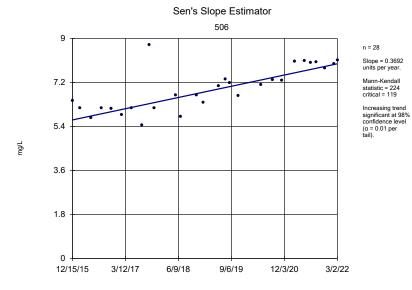
Constituent: Dissolved Solids (mg/l) Analysis Run 5/16/2022 11:32 AM View: LF III
Sibley Client: SCS Engineers Data: Sibley

				Sibley Client: S	SCS Engineers Da	ata: Sibley	
	504 (bg)	505 (bg)	510	512	513	515 (bg)	516 (bg)
12/15/2015			489	425	367	202	207
12/16/2015	155	162					
2/18/2016	236	148	446	366			
5/25/2016	385	172	451	467			
5/26/2016					391		
6/2/2016						171	189
8/23/2016	168	182	472	422			
11/10/2016			468				
11/11/2016	173	152		443	350	181	177
2/8/2017	174	151	462	404			
5/3/2017			486	436	365		
5/4/2017	181	159				176	183
8/1/2017	156	156	456	414			
10/3/2017	181	158	485	423		246	179
10/4/2017					359		
5/16/2018						660	632
5/17/2018	193	170	494	419	359		
11/14/2018						283	178
11/15/2018	211	167	478	452	380		
5/22/2019	197	180	480	445	343	222	272
11/6/2019	177	146	427	403	291	197	164
5/18/2020	205	179	474	481	365	247	201
7/14/2020				501			
8/26/2020				493			
11/11/2020	201	175	475	508	364	206	198
2/3/2021				487			
3/1/2021				508			
5/24/2021	174	181	468	505	408	198	190
7/19/2021		184		524			
9/2/2021		188		555			
11/15/2021	192	181	486	527	372	208	190
2/1/2022		182		516			
3/2/2022		185		513			

Time Series

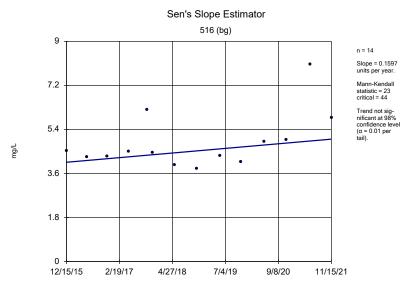
Constituent: Sulfate Analysis Run 5/16/2022 11:36 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Time Series

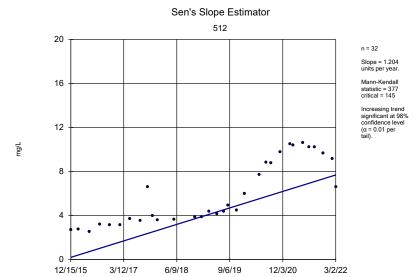

 $\label{eq:constituent: Sulfate (mg/L)} \begin{array}{ccc} \text{Constituent: Sulfate (mg/L)} & \text{Analysis Run 5/16/2022 11:37 AM} & \text{View: LF III} \\ & \text{Sibley} & \text{Client: SCS Engineers} & \text{Data: Sibley} \end{array}$

				Sibley (
	504 (bg)	506	512	515 (bg)
12/15/2015		64.8	23	22.1
12/16/2015	14.3			
2/18/2016	14.7	65.6	21	
5/25/2016	18.9	71	23.1	
6/2/2016				22.3
8/23/2016	15.4	65.8	24.4	
11/11/2016	17.4	65	24	19.5
2/8/2017	21	76.5	27.8	
5/3/2017			27.3	
5/4/2017	21.8	69.2		18.7
8/1/2017	23.3		28.1	
8/4/2017		73.3		
10/3/2017	24.3	71.3	28.2	54
5/16/2018				93.9
5/17/2018	32.8	75.7	29.6	
6/27/2018	31.8		30.3	
8/8/2018	32.3		30.9	
11/14/2018				70.8
11/15/2018	33.9	70.8	51.4	
1/11/2019	33.2	67.3	43.3	
3/12/2019	35.1		44.2	
5/22/2019	36.3	74.2	40.1	23.7
7/16/2019	36.3	76.1	42.1	
8/21/2019	35.6		41	
11/6/2019	35.4	76.8	45	19.1
1/13/2020			57.5	
2/3/2020			61.6	
5/18/2020	34.8	80	71.6	42.1
7/14/2020		78.6	77.6	
8/26/2020		79.6	80.1	
11/11/2020	33.1	87	92.6	15.8
2/3/2021		87.3	99.8	
3/1/2021		88.8	99.9	
5/24/2021	32.4	89.1	110	16.5
7/19/2021		89.1	104	
9/2/2021		88.7	107	
11/15/2021	27.9	89.8	93.1	14.2
2/1/2022		92.9	104	
3/2/2022		92.9	86.8	

Appendix C

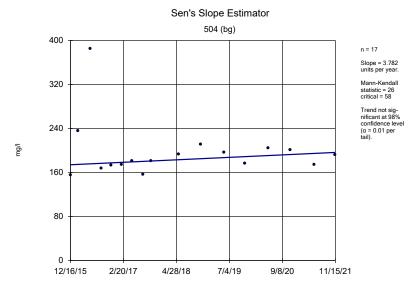

Trend Analysis

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

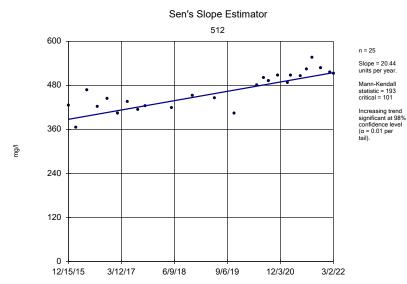

Constituent: Chloride Analysis Run 5/16/2022 2:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

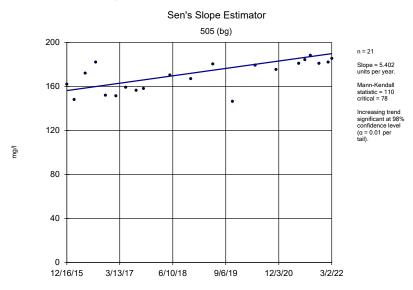
Constituent: Chloride Analysis Run 5/16/2022 2:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Constituent: Chloride Analysis Run 5/16/2022 2:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

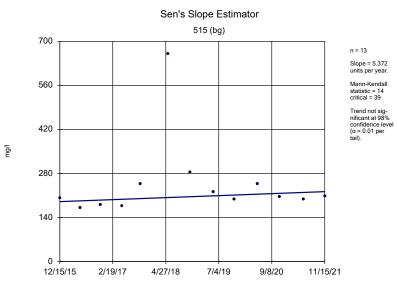

Trend Test

		Sibley Client: So	28 Engineers	Data: Sibley	Printed :	5/16/2022,	2:14 PM				
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	506	0.3692	224	119	Yes	28	0	n/a	n/a	0.02	NP
Chloride (mg/L)	512	1.204	377	145	Yes	32	0	n/a	n/a	0.02	NP
Chloride (mg/L)	516 (bg)	0.1597	23	44	No	14	0	n/a	n/a	0.02	NP



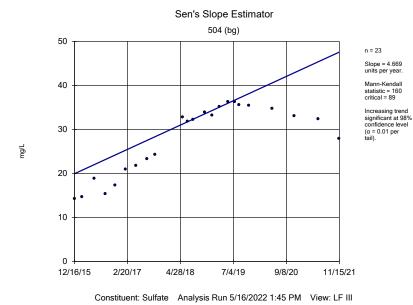
Constituent: Dissolved Solids Analysis Run 5/16/2022 1:42 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

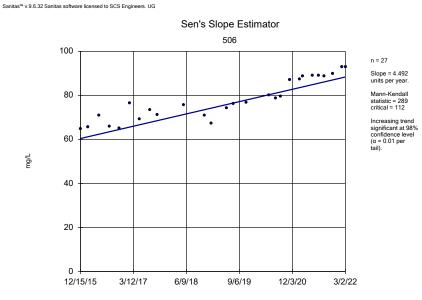


Constituent: Dissolved Solids Analysis Run 5/16/2022 1:42 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

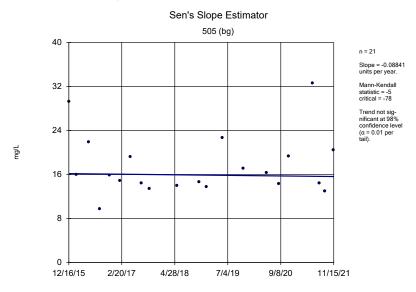
Constituent: Dissolved Solids Analysis Run 5/16/2022 1:42 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

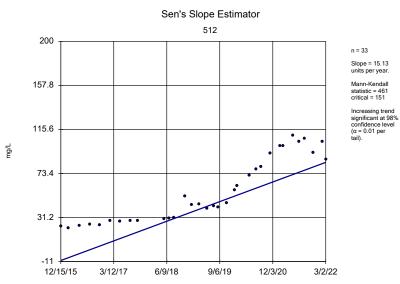
Constituent: Dissolved Solids Analysis Run 5/16/2022 1:42 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Trend Test

		Sibley Client: So	CS Engineers	Data: Sibley	Printed 5	5/16/2022,	1:44 PM				
Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Dissolved Solids (mg/l)	504 (bg)	3.782	26	58	No	17	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	505 (bg)	5.402	110	78	Yes	21	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	512	20.44	193	101	Yes	25	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	515 (bg)	5.372	14	39	No	13	0	n/a	n/a	0.02	NP



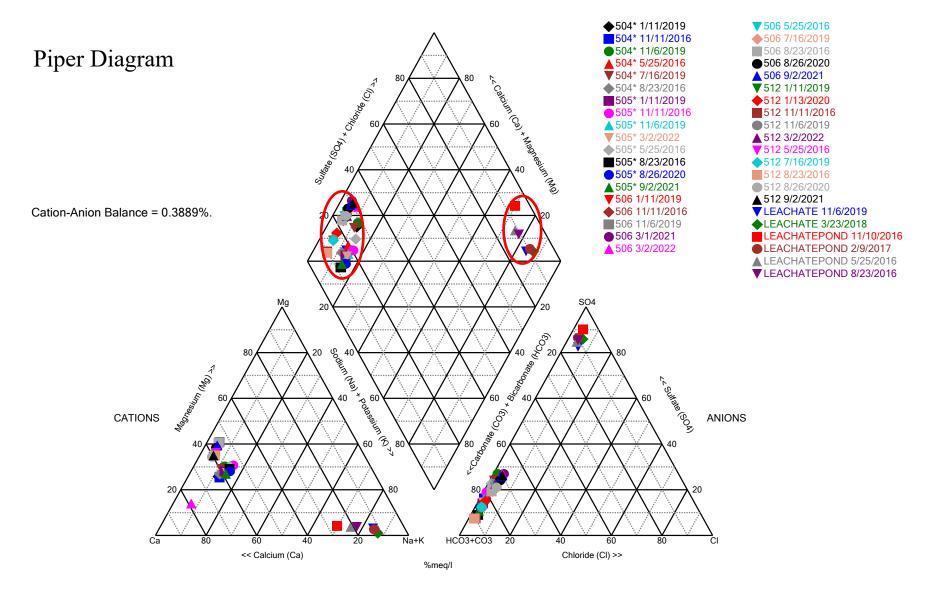
Client: SCS Engineers Data: Sibley



Constituent: Sulfate Analysis Run 5/16/2022 1:45 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 5/16/2022 1:45 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Constituent: Sulfate Analysis Run 5/16/2022 1:45 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Trend Test

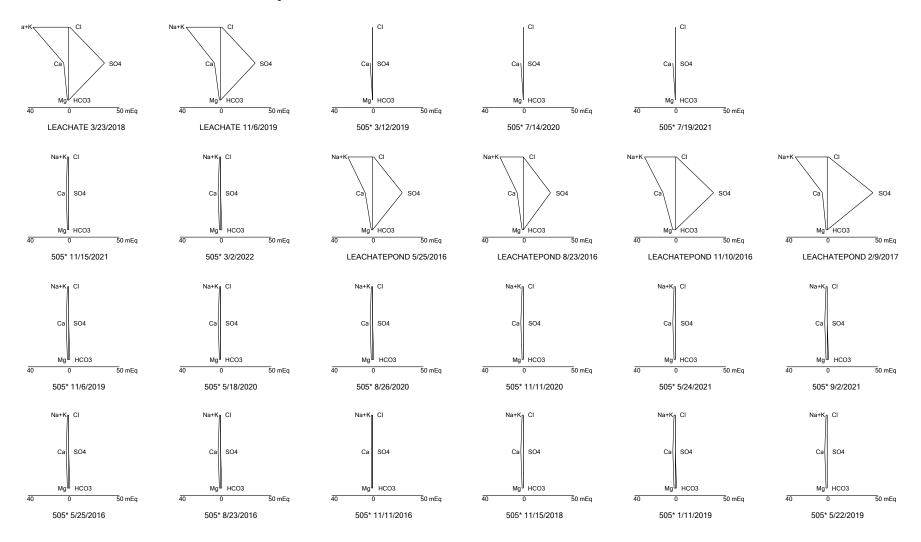
		Sibley Client: So	CS Engineers	Data: Sibley	Printed :	5/16/2022,	1:46 PM				
Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	504 (bg)	4.669	160	89	Yes	23	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	505 (bg)	-0.08841	-5	-78	No	21	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	506	4.492	289	112	Yes	27	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	512	15.13	461	151	Yes	33	0	n/a	n/a	0.02	NP

Appendix D

Piper Diagram Plots and Analytical Results

Analysis Run 5/16/2022 2:52 PM View: Pipers ASD

Sibley Client: SCS Engineers Data: Sibley

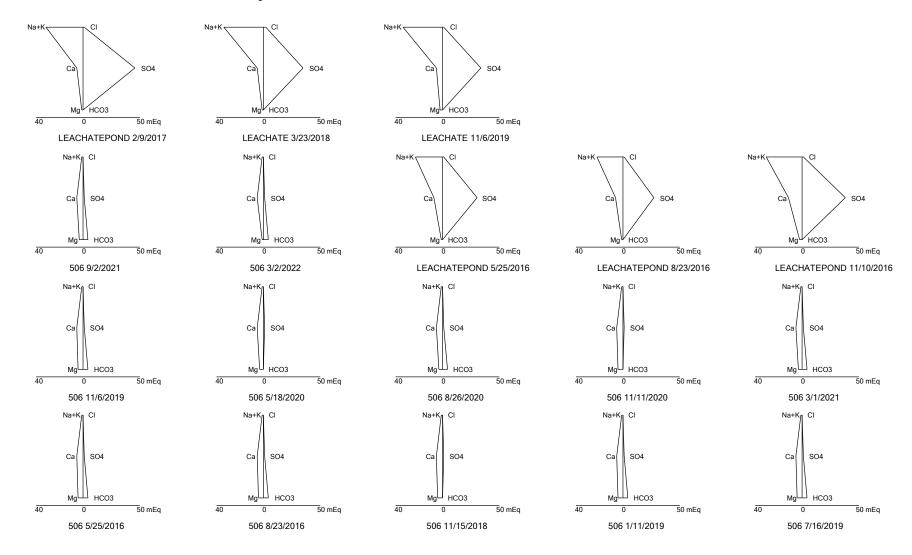

Piper Diagram

Analysis Run 5/16/2022 2:53 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mq	Cl	S04	HCO3	CO3
504* 5/25/2016	6.54	1.27	30.2	8.36	0.5	18.9	89	10
504* 8/23/2016	6.61	1.15	32.2	8.56	0.5	15.4	99.5	10
504* 11/11/2016	8.17	1.3	36.9	8.97	0.5	17.4	94.7	10
504* 1/11/2019	7.64	1.9	39.3	9.85	0.5	33.2	103	10
504* 7/16/2019	7.92	1.49	40.6	11.8	0.5	36.3	124	10
504* 11/6/2019	7.31	1.33	34.1	10.7	0.5	35.4	101	10
505* 5/25/2016	6.93	0.5	24.6	8.05	0.5	21.9	75.3	10
505* 8/23/2016	7.28	0.5	25.7	7.97	1.19	9.73	101	10
505* 11/11/2016	6.91	0.5	21.6	7.39	0.5	15.9	68.5	10
505* 1/11/2019	7.54	0.5	29.5	8.42	1	13.8	87.5	10
505* 11/6/2019	8.24	0.5	28.2	9.54	0.5	17.1	93.6	10
505* 8/26/2020	8.95	1	30.3	8.95	1.03	14.3	110	10
505* 9/2/2021	8.97	1	34.1	9.34	1.23	13	118	10
505* 3/2/2022	9	1	32.8	9.32	1.18	16.8	107	10
506 5/25/2016	8.51	2.19	98.3	43.6	5.76	71	304	10
506 8/23/2016	8.28	1.79	97.2	42.8	6.16	65.8	326	10
506 11/11/2016	8.44	2.37	96.5	41.2	6.13	65	312	10
506 1/11/2019	8.21	1.85	93	39.7	6.39	67.3	292	10
506 7/16/2019	8.24	1.89	95.3	40.7	7.33	76.1	291	10
506 11/6/2019	8.1	1.88	93.7	42.2	6.66	76.8	306	10
506 8/26/2020	8.15	1	93.9	38.2	7.31	79.6	289	10
506 3/1/2021	8.14	1	93	38.8	8.05	88.8	277	10
506 9/2/2021	8.43	1	91.1	38.3	8.03	88.7	296	10
506 3/2/2022	9.44	1	94.6	10	8.1	92.9	293	10
512 5/25/2016	10	2.24	98.9	36.8	2.55	23.1	356	10
512 8/23/2016	10.3	2.13	103	36.9	3.23	24.4	384	10
512 11/11/2016	9.96	2.16	100	35.6	3.17	24	352	10
512 1/11/2019	10.6	2.25	110	37.8	3.85	43.3	366	10
512 7/16/2019	10.4	2.33	108	38.6	4.35	42.1	363	10
512 11/6/2019	10	2.21	105	39.4	4.48	45	377	10
512 1/13/2020	9.87	2.18	103	38.4	5.97	57.5	391	10
512 8/26/2020	10.4	2.13	114	38.9	8.79	80.1	349	10
512 9/2/2021	10.3	2.16	114	39.9	10.2	107	349	10
512 3/2/2022	11.3	2.4	118	41.6	6.61	86.8	355	10
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10	119
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10	104
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5	68.3
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9	146
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10	108
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3	125

Appendix E

Stiff Diagrams and Analytical Results

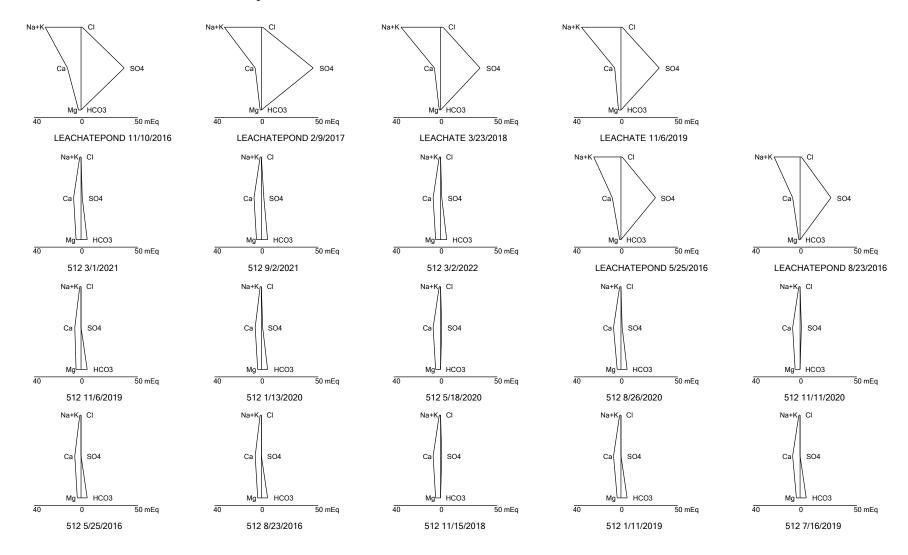


Stiff Diagram Analysis Run 5/16/2022 2:55 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Stiff Diagram

Analysis Run 5/16/2022 2:57 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3
505* 5/25/2016	6.93	0.5	24.6	8.05	0.5	21.9	75.3
505* 8/23/2016	7.28	0.5	25.7	7.97	1.19	9.73	101
505* 11/11/2016	6.91	0.5	21.6	7.39	0.5	15.9	68.5
505* 11/15/2018	8.45	0	30.8	9.26	0.5	14.6	0
505* 1/11/2019	7.54	0.5	29.5	8.42	1	13.8	87.5
505* 5/22/2019	9.18	0	26.4	10	0.5	22.7	0
505* 11/6/2019	8.24	0.5	28.2	9.54	0.5	17.1	93.6
505* 5/18/2020	7.6	0	30.5	9.19	1.06	16.3	0
505* 8/26/2020	8.95	1	30.3	8.95	1.03	14.3	110
505* 11/11/2020	7.71	0	29.1	9.27	0.5	19.3	0
505* 5/24/2021	7.69	0	34.4	10.4	1.11	32.6	0
505* 9/2/2021	8.97	1	34.1	9.34	1.23	13	118
505* 11/15/2021	7.49	0	27.7	9.36	1.13	20.4	0
505* 3/2/2022	9	1	32.8	9.32	1.18	16.8	107
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3
505* 3/12/2019	n/a	n/a	24.9	0	0	0	0
505* 7/14/2020	n/a	n/a	32.4	0	0	0	0
505* 7/19/2021	n/a	n/a	34.8	0	0	14.4	0



Stiff Diagram Analysis Run 5/16/2022 3:10 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

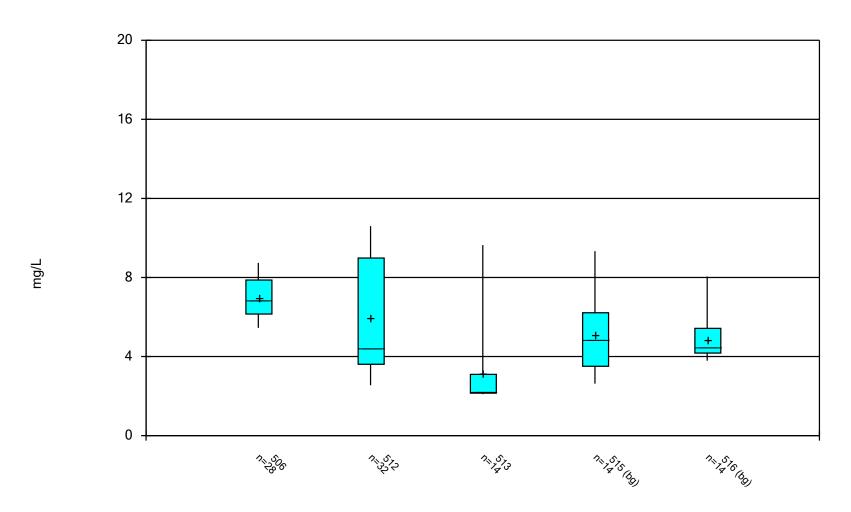
Stiff Diagram

Analysis Run 5/16/2022 3:11 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mq	Cl	S04	нсо3
506 5/25/2016	8.51	2.19	98.3	43.6	5.76	71	304
506 8/23/2016	8.28	1.79	97.2	42.8	6.16	65.8	326
506 11/15/2018	8.54	0	93.4	41.6	6.69	70.8	0
506 1/11/2019	8.21	1.85	93	39.7	6.39	67.3	292
506 7/16/2019	8.24	1.89	95.3	40.7	7.33	76.1	291
506 11/6/2019	8.1	1.88	93.7	42.2	6.66	76.8	306
506 5/18/2020	7.93	0	92.7	39	7.11	80	0
506 8/26/2020	8.15	1	93.9	38.2	7.31	79.6	289
506 11/11/2020	8.38	0	93.4	40.1	7.28	87	0
506 3/1/2021	8.14	1	93	38.8	8.05	88.8	277
506 9/2/2021	8.43	1	91.1	38.3	8.03	88.7	296
506 3/2/2022	9.44	1	94.6	10	8.1	92.9	293
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3

Stiff Diagram Analysis Run 5/16/2022 3:08 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Stiff Diagram

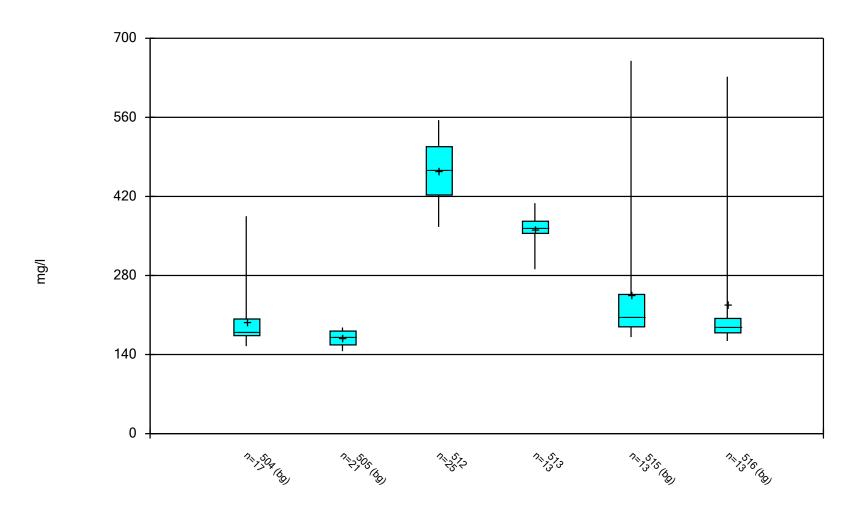

Analysis Run 5/16/2022 3:10 PM View: Pipers ASD Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mq	Cl	S04	HCO3
512 5/25/2016	10	2.24	98.9	36.8	2.55	23.1	356
512 8/23/2016	10.3	2.13	103	36.9	3.23	24.4	384
512 11/15/2018	11.7	0	110	40.2	3.89	51.4	0
512 1/11/2019	10.6	2.25	110	37.8	3.85	43.3	366
512 7/16/2019	10.4	2.33	108	38.6	4.35	42.1	363
512 11/6/2019	10	2.21	105	39.4	4.48	45	377
512 1/13/2020	9.87	2.18	103	38.4	5.97	57.5	391
512 5/18/2020	10	0	110	39.2	7.69	71.6	0
512 8/26/2020	10.4	2.13	114	38.9	8.79	80.1	349
512 11/11/2020	10.4	0	115	41.6	9.75	92.6	0
512 3/1/2021	10	2.13	117	40.8	10.4	99.9	340
512 9/2/2021	10.3	2.16	114	39.9	10.2	107	349
512 3/2/2022	11.3	2.4	118	41.6	6.61	86.8	355
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3

Appendix F

Box and Whiskers Plots

Box & Whiskers Plot

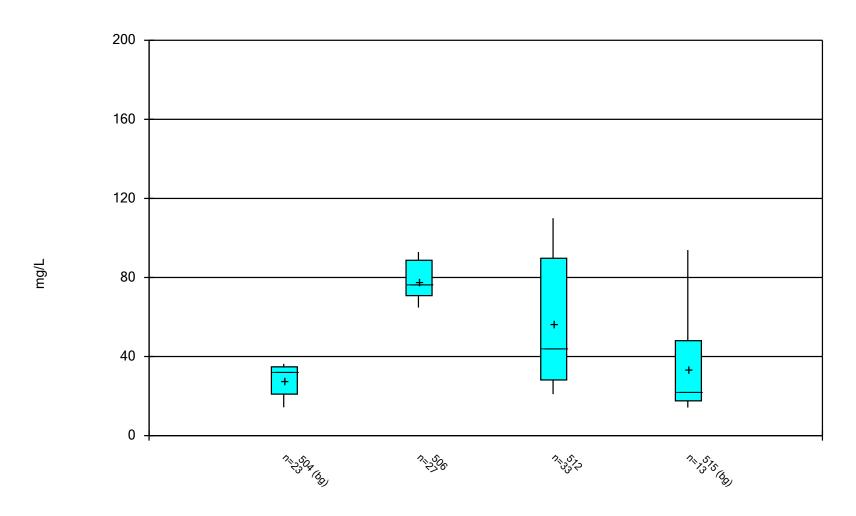


Constituent: Chloride Analysis Run 5/16/2022 4:05 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Box & Whiskers Plot

	Sibley	Client: SCS Er	ngineers Data:	Sibley Printed 5	/16/2022, 4:06 PM				
<u>Constituent</u> <u>W</u>	<u>/ell</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Chloride (mg/L) 50	06	28	6.948	0.8947	0.1691	6.87	5.45	8.74	0
Chloride (mg/L) 51	12	32	5.969	2.885	0.51	4.43	2.55	10.6	0
Chloride (mg/L) 51	13	14	3.133	2.062	0.5511	2.225	2.1	9.64	0
Chloride (mg/L) 51	15 (bg)	14	5.087	2.008	0.5366	4.815	2.63	9.33	0
Chloride (mg/L) 51	16 (bg)	14	4.874	1.142	0.3051	4.48	3.79	8.05	0

Box & Whiskers Plot

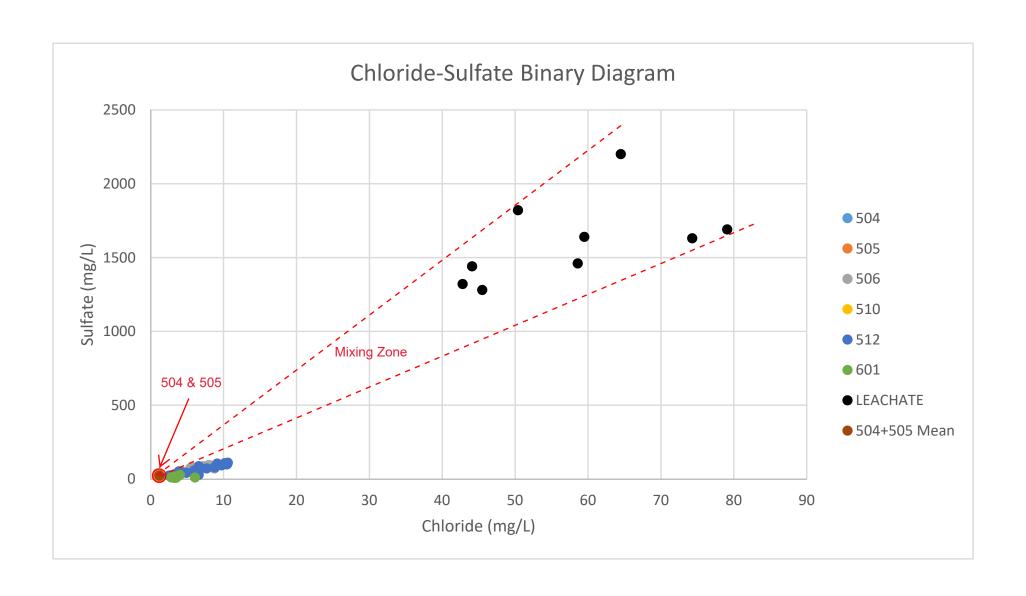


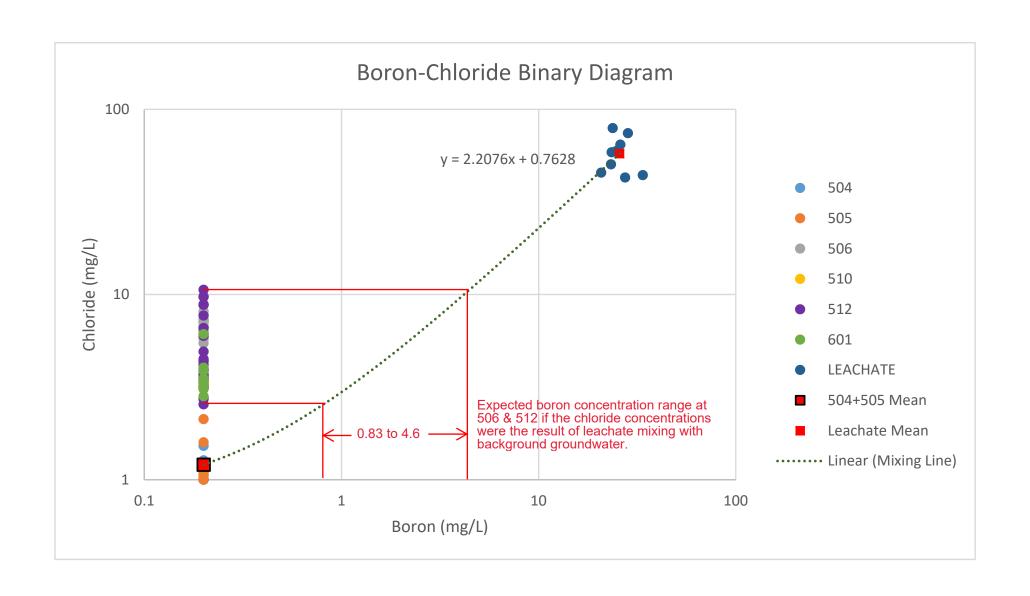
Constituent: Dissolved Solids Analysis Run 5/16/2022 4:09 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

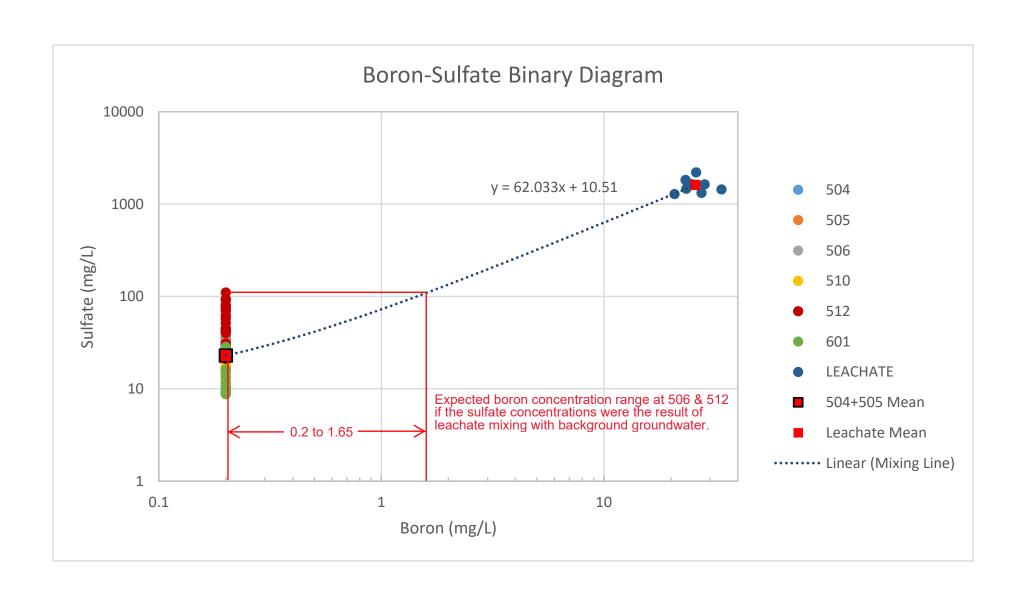
Box & Whiskers Plot

	Sibley	Client: SCS Engineers		Data: Sibley P	rinted 5/16/2022, 4:10 PM				
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	<u>Max.</u>	%NDs
Dissolved Solids (mg/l)	504 (bg)	17	197.6	52.45	12.72	181	155	385	0
Dissolved Solids (mg/l)	505 (bg)	21	169.4	13.71	2.991	172	146	188	0
Dissolved Solids (mg/l)	512	25	465.5	49.01	9.801	467	366	555	0
Dissolved Solids (mg/l)	513	13	362.6	27.37	7.59	365	291	408	0
Dissolved Solids (mg/l)	515 (bg)	13	245.9	128.4	35.61	206	171	660	0
Dissolved Solids (mg/l)	516 (bg)	13	227.7	124.2	34.46	190	164	632	0

Box & Whiskers Plot


Constituent: Sulfate Analysis Run 5/16/2022 4:11 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Box & Whiskers Plot


	Sibley C	lient: SCS Er	ngineers Data:	Sibley Printed 5	/16/2022, 4:13 PM				
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
Sulfate (mg/L)	504 (bg)	23	27.91	7.838	1.634	32.3	14.3	36.3	0
Sulfate (mg/L)	506	27	78.04	9.339	1.797	76.5	64.8	92.9	0
Sulfate (mg/L)	512	33	56.68	30.94	5.386	44.2	21	110	0
Sulfate (mg/L)	515 (bg)	13	33.28	24.97	6.925	22.1	14.2	93.9	0

Appendix G

Binary Plots

APPENDIX C.2				
Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2022)				
, and the second of the second				

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2022 GROUNDWATER MONITORING EVENT

CCR LANDFILL

Sibley Generating Station Evergy Missouri West, Inc. Sibley, Missouri

SCS ENGINEERS

December 2022 File No. 27213169.22

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

DOUGLAS LEE DOERR

NUMBER PE-28982

SCS Engineers

Table of Contents

Sec	tion		Page
CER	TIFICATION	ONS	i
1	Regula	atory Framework	1
2	Statist	ical Results	1
3	Altern	2	
	3.1	Time Series Plots	2
	3.2	Trend Analysis	3
	3.3	Piper Diagram Plots	3
	3.4	Stiff Diagrams	4
	3.5	Box and Whiskers Plots	4
	3.6	Binary Plots	5
4		ısion	
5	Gener	al Comments	6
Αp	pend	lices	
Арр	endix A	Figure 1	
App	endix B	Time Series Plots	
App	endix C	Trend Analysis	
App	endix D	Piper Diagram Plots and Analytical Results	
App	endix E	Stiff Diagrams and Analytical Results	
App	endix F	Box and Whiskers Plots	
App	endix G	Binary Plots	

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 12, 2022. Review and validation of the results from the May 2022 Detection Monitoring Event was completed on July 1, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 15, 2022 and August 18, 2022.

The completed statistical evaluation identified two Appendix III constituents above their prediction limits established for monitoring well MW-506.

Monitoring Well Constituent	*UPL	Observation May 12, 2022	1st Verification July 15, 2022	2nd Verification August 18, 2022
MW-506				
Chloride	7.578	8.39	8.5	12.5/8.54**
Sulfate	76.83	99	102	95.5

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified

1

^{**}Duplicate Sample Result

two SSIs above the background prediction limits. These include chloride and sulfate at monitoring well MW-506.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for chloride in monitoring well MW-506 was compared to time series plots for chloride in upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Side-gradient and up-gradient monitoring wells are considered to represent natural groundwater since they could not have been impacted by the landfill due to the direction of groundwater travel in relation to the location of the landfill. The comparisons indicate the chloride concentrations increased in non-CCR monitoring system upgradient/side-gradient wells MW-515 and MW-516 and the concentrations in MW-506 are near the concentration levels for natural groundwater as represented by the upgradient/side-gradient monitoring wells in the vicinity of the CCR Landfill. Additionally, the varying levels of chloride in these wells indicate that groundwater chloride concentrations can fluctuate naturally within the well network, including upgradient/side-gradient wells such as MW-515 and MW-516.

Time series plots for sulfate in monitoring well MW-506 were compared to time series plots for sulfate in an upgradient monitoring network well (MW-504) and upgradient/side-gradient non-CCR monitoring system well (MW-515), installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 are within or very near the range of concentration levels for upgradient/side-gradient groundwater in the vicinity of the CCR Landfill; specifically, MW-515. Additionally, there has been increasing concentrations of sulfate in upgradient well MW-504 and large variations of concentrations in MW-515, both of which represent natural groundwater conditions.

Figure 1 in **Appendix A** shows these upgradient and side/gradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit variability that includes concentrations within the range or similar to those seen in MW-506, the observed concentrations are within the range of

expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill could have caused the SSIs over the background levels, or that the SSIs could have resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix B**.

3.2 TREND ANALYSIS

Trend analysis was performed to evaluate for statistically significant trends utilizing Sen's Slope/Mann-Kendall Statistical Analysis. Sen's Slope/Mann-Kendall statistical analysis is used to determine if the data exhibits an SSI or statistically significant decreasing (SSD) trend. A trend is the general increase or decrease in observed values of a variable over time. A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend. The Mann-Kendall test is nonparametric, meaning that it does not depend on an assumption of a particular underlying distribution. The test uses only the relative magnitude of data rather than actual values. Therefore, missing values are allowed, and values that are recorded as non-detects by the laboratory can still be used in the statistical analysis by assigning values equal to half their detection limits. Sen's Slope is a simple nonparametric procedure developed to estimate the true slope. The advantage of this method over linear regression is that it is not greatly affected by gross data errors or outliers, and can be computed when data are missing.

The Sen's Slope/Mann-Kendall Statistical Analysis was performed at the 98 percent confidence level utilizing the statistical program Sanitas[™]. Chloride data from December 2015 through the most recent data for upgradient and side-gradient non-CCR monitoring system well MW-516 and monitoring network well MW-506 were used to perform trend analysis. The trend analysis for chloride indicates upgradient/side-gradient well MW-516 has a positive slope (i.e. increasing trend but not statistically significant) and concentrations near that of MW-506. Since this upgradient/side-gradient well shows a positive concentration slope and a concentration range similar to MW-506 and represents natural conditions, it is also likely the downgradient wells increased similarly due to natural conditions.

Sulfate data from December 2015 through the most recent data for upgradient well MW-504 and downgradient well MW-506 were used to perform trend analysis. The trend analysis for sulfate indicates upgradient well MW-504 and downgradient well MW-506 have increasing trends. Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient well increased similarly due to natural conditions.

These trend analyses demonstrate that a source other than the CCR Landfill caused the SSIs over the background level for chloride and sulfate or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Trend analyses are provided in **Appendix C**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A Piper diagram generated for downgradient well MW-506 and landfill leachate is provided in **Appendix D** along with analytical results. The Piper diagram indicates the groundwater from MW-506 does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate) and that downgradient groundwater characteristics are different from the leachate. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels in MW-506, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.4 STIFF DIAGRAMS

Stiff diagrams are a graphical method commonly used to portray water compositions and facilitate the interpretation and presentation of chemical analysis. They visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

Stiff diagrams are calculated in terms of milliequivalents and take into account ionic charge and the formula weight for major ions, specifically Sodium (Na) plus Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3). The milliequivalents per liter of the cation and anions are plotted across from each other along a central vertical line and the distance from the center line is the value for each constituent.

Stiff diagrams were prepared for MW-506 alongside Stiff diagrams calculated for leachate and are provided in **Appendix E**. The Stiff diagrams indicate the groundwater from MW-506 does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate stiff diagram shapes are dis-similar indicating there is no mixing of the two types of water (groundwater and leachate) and that downgradient groundwater characteristics are different from the leachate. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels in MW-506, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.5 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set.

The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

The box and whiskers plot for chloride in monitoring well MW-506 was compared to box and whiskers plots for chloride in upgradient and side-gradient non-CCR monitoring system wells (MW-515 and MW-516) installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the concentrations in MW-506 are generally within the range of expected concentrations for natural groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for sulfate in monitoring well MW-506 was compared to box and whiskers plots for sulfate in upgradient and side-gradient non-CCR monitoring system well MW-515 installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 are generally within the range of concentration levels for natural groundwater as represented by upgradient and side-gradient monitoring well MW-515 in the vicinity of the CCR Landfill.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit natural variability that includes concentrations similar to those seen in MW-506, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix F**.

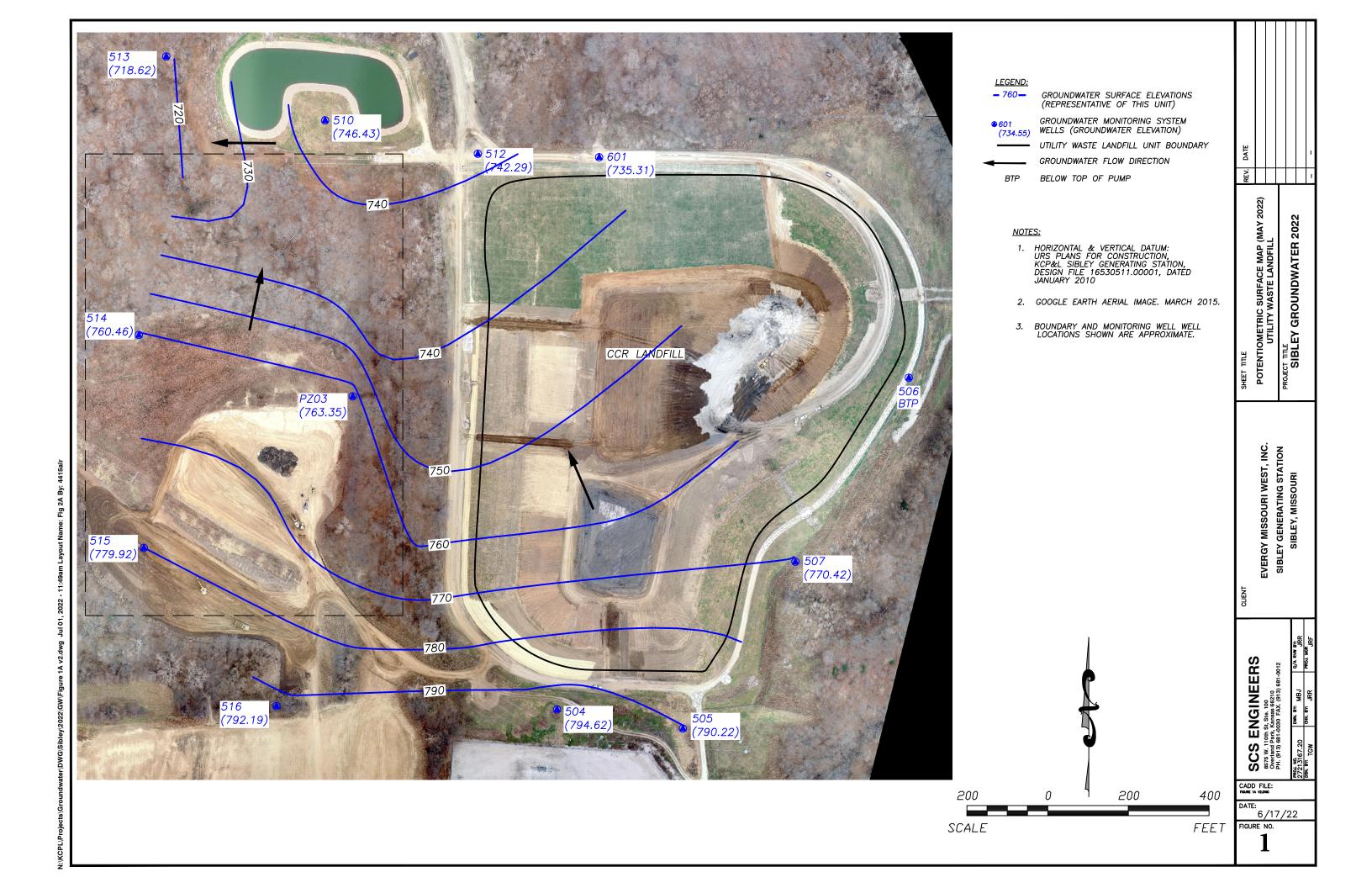
3.6 BINARY PLOTS

Binary plots are another way to visualize data and allow evaluation of mixing of various waters. Binary plots for the monitoring wells and leachate were prepared for pairs of highly mobile constituents. These include chloride - sulfate, boron - sulfate, and boron - chloride. The chloride - sulfate plot identifies the mixing zone between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the data for the downgradient wells would fall within the mixing zone on the plot; however, the data for the downgradient wells falls below the mixing zone. The boron – sulfate and boron - chloride plots identify the mixing line between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the sulfate – boron and chloride – boron data for MW-506 would fall on the mixing line and the boron concentrations would range from 0.92 mg/L to 1.6 mg/L based on the sulfate mixing line and approximately 2.2 mg/L to 3.5 mg/L based on the chloride mixing line. However, the boron in downgradient wells was not detected at a concentration above the reporting limit of 0.2 mg/L. Therefore, because boron is present in the leachate but is not present in the downgradient wells, leachate is not mixing with groundwater.

These binary plots demonstrate that leachate is not mixing with upgradient groundwater and that a source other than the CCR Landfill caused the SSIs over the background level for sulfate and chloride, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Binary plots are provided in **Appendix G**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc. for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

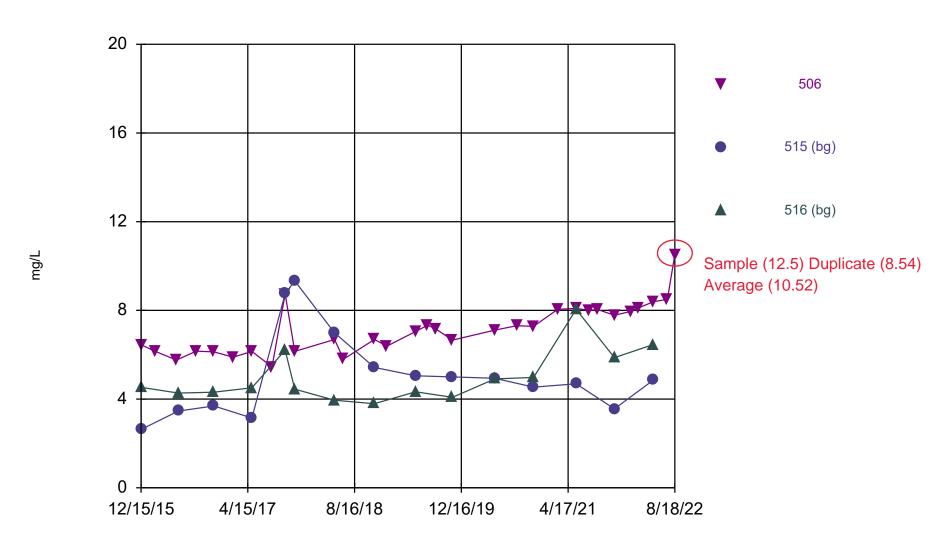
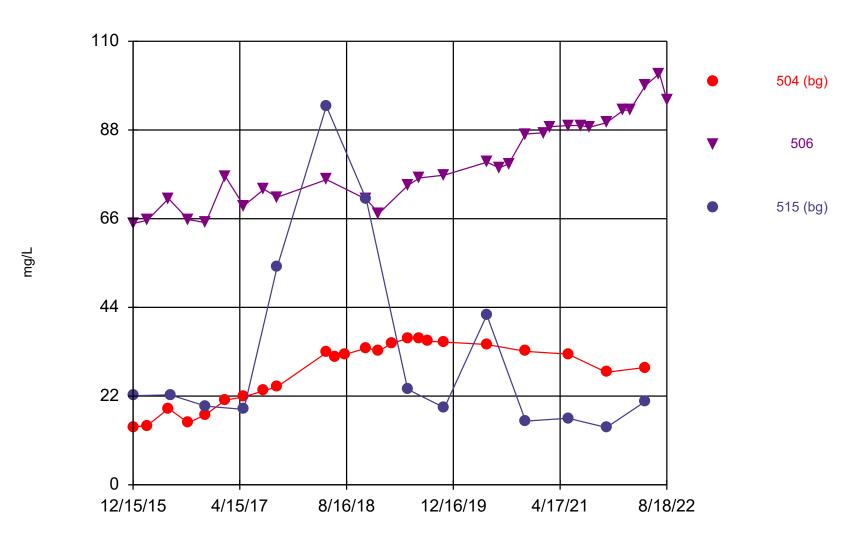

Appendix A

Figure 1

Appendix B

Time Series Plots



Constituent: Chloride Analysis Run 11/28/2022 11:20 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

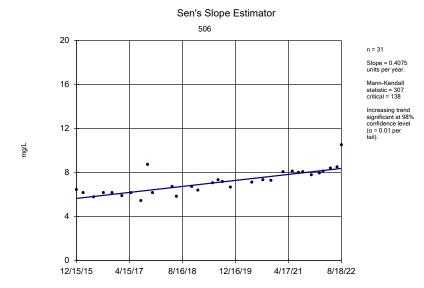
Constituent: Chloride (mg/L) Analysis Run 11/28/2022 11:21 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	506	515 (bg)	516 (bg)
12/15/2015	6.45	2.63	4.53
2/18/2016	6.15		
5/25/2016	5.76		
6/2/2016		3.46	4.27
8/23/2016	6.16		
11/11/2016	6.13	3.69	4.31
2/8/2017	5.89		
5/4/2017	6.15	3.15	4.51
8/4/2017	5.45		
10/3/2017	8.74	8.75	6.21
11/16/2017	6.15	9.33	4.45
5/16/2018		7	3.95
5/17/2018	6.69		
6/27/2018	5.8		
11/14/2018		5.43	3.79
11/15/2018	6.69		
1/11/2019	6.39		
5/22/2019	7.05	5.05	4.33
7/16/2019	7.33		
8/21/2019	7.17		
11/6/2019	6.66	5	4.08
5/18/2020	7.11	4.94	4.91
8/26/2020	7.31		
11/11/2020	7.28	4.54	4.98
3/1/2021	8.05		
5/24/2021	8.09	4.69	8.05
7/19/2021	8.01		
9/2/2021	8.03		
11/15/2021	7.78	3.56	5.87
2/1/2022	7.96		
3/2/2022	8.1		
5/12/2022	8.39	4.86	6.46
7/15/2022	8.5		
8/18/2022	10.52 (D)		

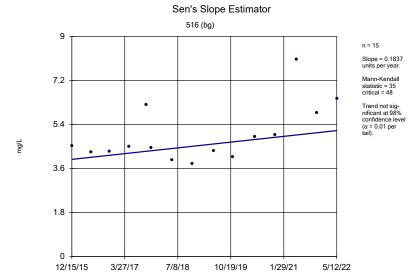
Sample (12.5) Duplicate (8.54) Average (10.52)

Constituent: Sulfate Analysis Run 11/28/2022 11:15 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 11/28/2022 11:16 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

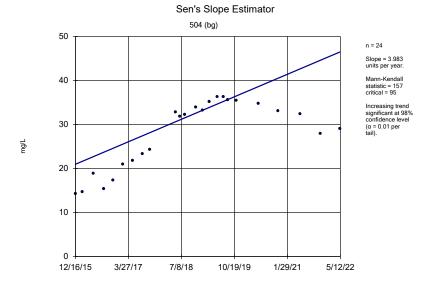

	504 (bg)	506	515 (bg)
12/15/2015	,	64.8	22.1
12/16/2015	14.3		
2/18/2016	14.7	65.6	
5/25/2016	18.9	71	
6/2/2016			22.3
8/23/2016	15.4	65.8	
11/11/2016	17.4	65	19.5
2/8/2017	21	76.5	
5/4/2017	21.8	69.2	18.7
8/1/2017	23.3		
8/4/2017		73.3	
10/3/2017	24.3	71.3	54
5/16/2018			93.9
5/17/2018	32.8	75.7	
6/27/2018	31.8		
8/8/2018	32.3		
11/14/2018			70.8
11/15/2018	33.9	70.8	
1/11/2019	33.2	67.3	
3/12/2019	35.1		
5/22/2019	36.3	74.2	23.7
7/16/2019	36.3	76.1	
8/21/2019	35.6		
11/6/2019	35.4	76.8	19.1
5/18/2020	34.8	80	42.1
7/14/2020		78.6	
8/26/2020		79.6	
11/11/2020	33.1	87	15.8
2/3/2021		87.3	
3/1/2021		88.8	
5/24/2021	32.4	89.1	16.5
7/19/2021		89.1	
9/2/2021		88.7	
11/15/2021	27.9	89.8	14.2
2/1/2022		92.9	
3/2/2022		92.9	
5/12/2022	29.1	99	20.7
7/15/2022		102	
8/18/2022		95.5	

Appendix C


Trend Analysis

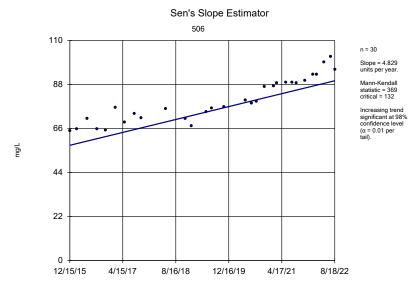
Sanitas™ v.9.6.36 Software licensed to SCS Engineers. UG

Constituent: Chloride Analysis Run 11/28/2022 11:28 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley



Constituent: Chloride Analysis Run 11/28/2022 11:28 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

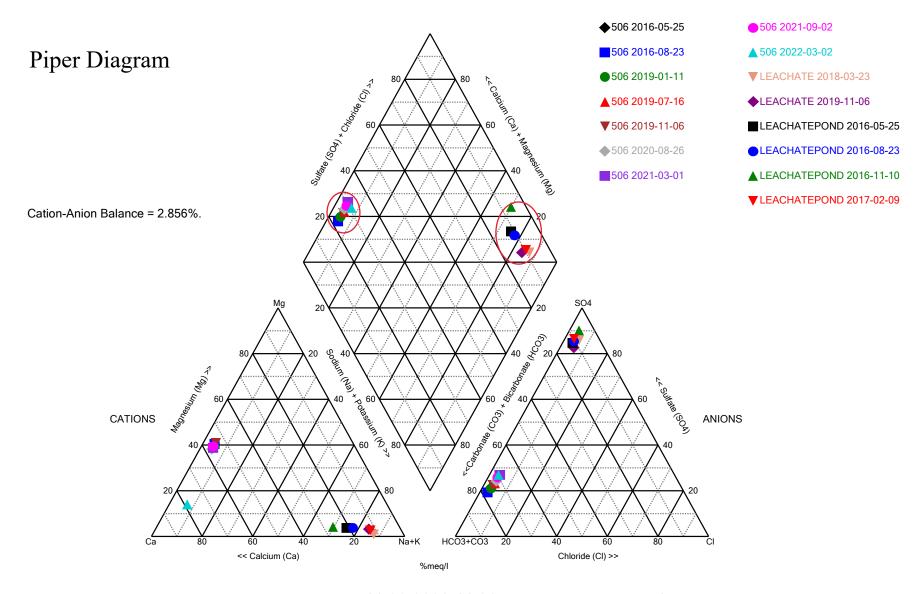
Trend Test


	Sibley Genera	ating Station UV	VL Client: So	CS Engineers	Data: Sibl	ley Printe	ed 11/28/20	22, 11:29 AM			
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	506	0.4075	307	138	Yes	31	0	n/a	n/a	0.02	NP
Chloride (mg/L)	516 (bg)	0.1837	35	48	No	15	0	n/a	n/a	0.02	NP

Sanitas™ v.9.6.36 Software licensed to SCS Engineers. UG

Constituent: Sulfate Analysis Run 11/28/2022 11:32 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.36 Software licensed to SCS Engineers. UG


Constituent: Sulfate Analysis Run 11/28/2022 11:32 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

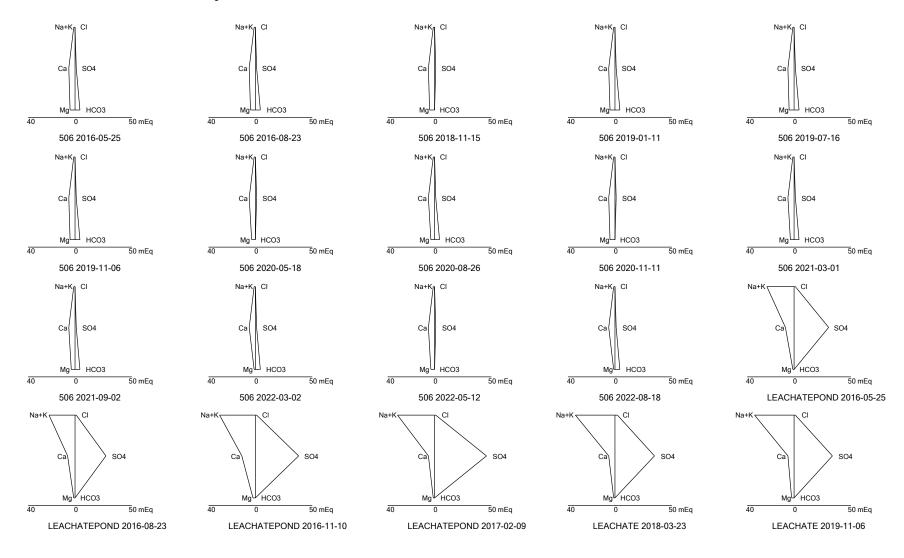
Trend Test

	Sibley Genera	ating Station UV	VL Client: S0	CS Engineers	Data: Sibl	ley Printe	ed 11/28/20	22, 11:33 AM			
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	504 (bg)	3.983	157	95	Yes	24	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	506	4.829	369	132	Yes	30	0	n/a	n/a	0.02	NP

Appendix D

Piper Diagram Plots and Analytical Results

Analysis Run 11/28/2022 11:36 AM View: Pipers ASD Sibley Generating Station UWL Client: SCS Engineers Data: Sibley


Piper Diagram

Analysis Run 11/28/2022 11:55 AM View: Pipers ASD
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

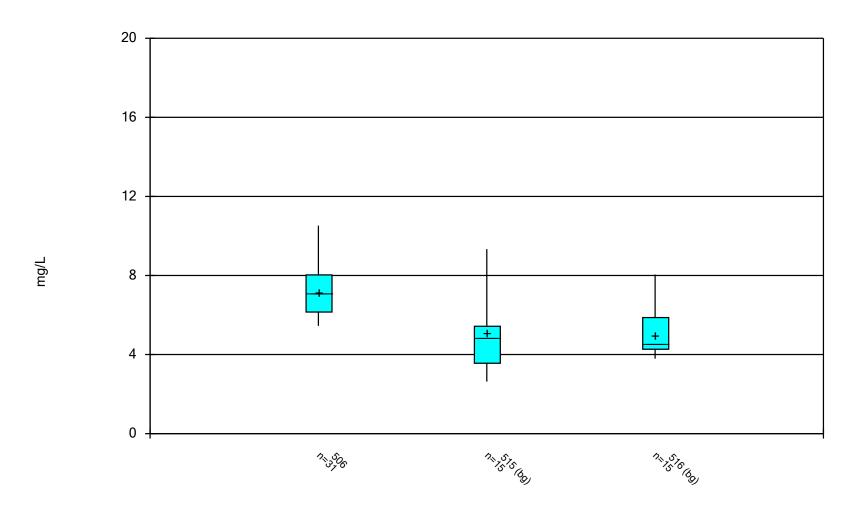
Totals (ppm)	Na	K	Ca	Mq	Cl	SO4	нсоз	CO3
506 2016-05-25	8.51	2.19	98.3	43.6	5.76	71	304	10
506 2016-08-23	8.28	1.79	97.2	42.8	6.16	65.8	326	10
506 2019-01-11	8.21	1.85	93	39.7	6.39	67.3	292	10
506 2019-07-16	8.24	1.89	95.3	40.7	7.33	76.1	291	10
506 2019-11-06	8.1	1.88	93.7	42.2	6.66	76.8	306	10
506 2020-08-26	8.15	1	93.9	38.2	7.31	79.6	289	10
506 2021-03-01	8.14	1	93	38.8	8.05	88.8	277	10
506 2021-09-02	8.43	1	91.1	38.3	8.03	88.7	296	10
506 2022-03-02	9.44	1	94.6	10	8.1	92.9	293	10
506 2022-08-18	8.34	2.03	94.2	3.94	10.52	95.5	312	10
LEACHATEPOND 2016-05-25	499	58.6	129	12.9	44.1	1440	10	119
LEACHATEPOND 2016-08-23	479	56.8	108	12.8	42.8	1320	10	104
LEACHATEPOND 2016-11-10	651	75.3	224	22.5	50.4	1820	30.5	68.3
LEACHATEPOND 2017-02-09	678	66.2	89.4	10.8	64.5	2200	38.9	146
LEACHATE 2018-03-23	741	70.3	88.5	4.66	79.1	1690	10	108
LEACHATE 2019-11-06	732	76.4	101	13.5	74.3	1630	53.3	125

Appendix E

Stiff Diagrams and Analytical Results

Stiff Diagram Analysis Run 11/28/2022 11:58 AM View: Pipers ASD Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Stiff Diagram


Analysis Run 11/28/2022 11:58 AM View: Pipers ASD Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	нсо3
506 2016-05-25	8.51	2.19	98.3	43.6	5.76	71	304
506 2016-08-23	8.28	1.79	97.2	42.8	6.16	65.8	326
506 2018-11-15	8.54	0	93.4	41.6	6.69	70.8	0
506 2019-01-11	8.21	1.85	93	39.7	6.39	67.3	292
506 2019-07-16	8.24	1.89	95.3	40.7	7.33	76.1	291
506 2019-11-06	8.1	1.88	93.7	42.2	6.66	76.8	306
506 2020-05-18	7.93	0	92.7	39	7.11	80	0
506 2020-08-26	8.15	1	93.9	38.2	7.31	79.6	289
506 2020-11-11	8.38	0	93.4	40.1	7.28	87	0
506 2021-03-01	8.14	1	93	38.8	8.05	88.8	277
506 2021-09-02	8.43	1	91.1	38.3	8.03	88.7	296
506 2022-03-02	9.44	1	94.6	10	8.1	92.9	293
506 2022-05-12	7.99	0	89.4	37.7	8.39	99	0
506 2022-08-18	8.34	2.03	94.2	3.94	10.52	95.5	312
LEACHATEPOND 2016-05-25	499	58.6	129	12.9	44.1	1440	10
LEACHATEPOND 2016-08-23	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 2016-11-10	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2017-02-09	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 2018-03-23	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 2019-11-06	732	76.4	101	13.5	74.3	1630	53.3

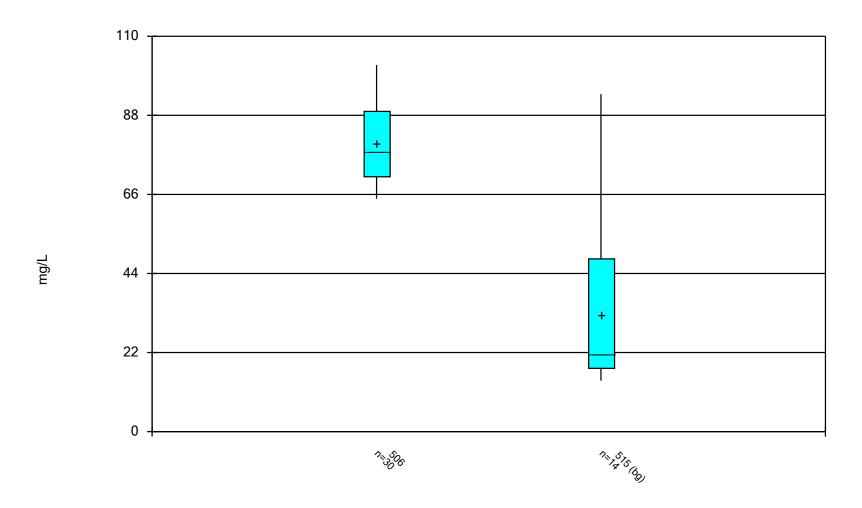
Appendix F

Box and Whiskers Plots

Box & Whiskers Plot

Constituent: Chloride Analysis Run 11/28/2022 11:21 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Box & Whiskers Plot

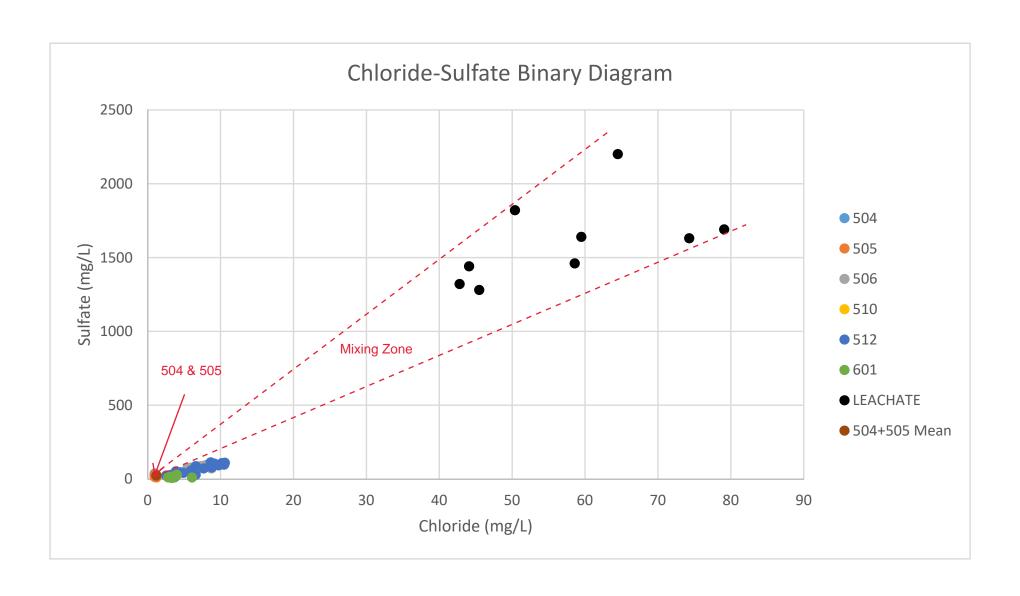

Constituent: Chloride (mg/L) Analysis Run 11/28/2022 11:22 AM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

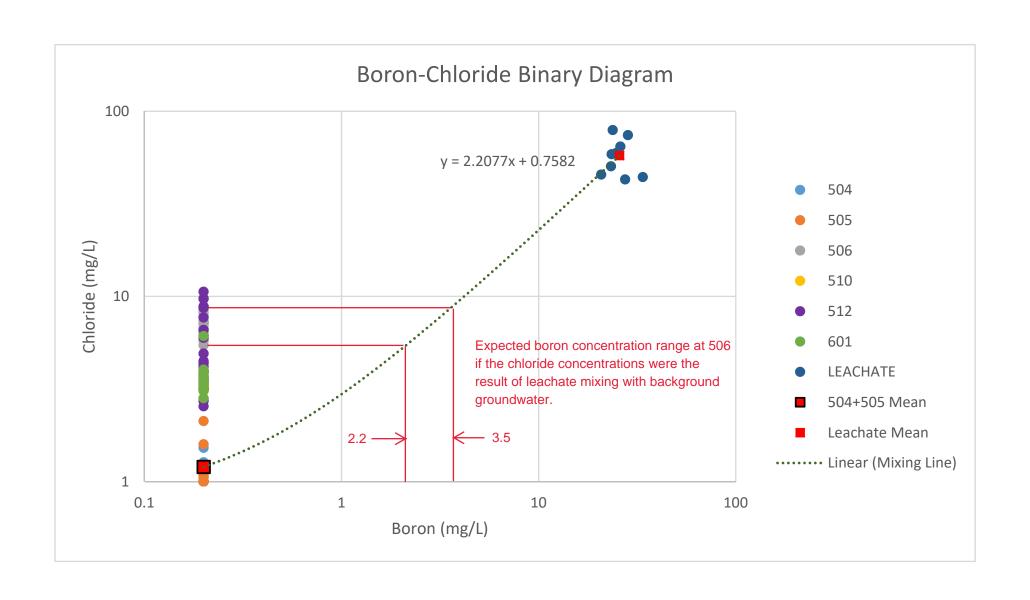
	506	515 (bg)	516 (bg)
12/15/2015	6.45	2.63	4.53
2/18/2016	6.15		
5/25/2016	5.76		
6/2/2016		3.46	4.27
8/23/2016	6.16		
11/11/2016	6.13	3.69	4.31
2/8/2017	5.89		
5/4/2017	6.15	3.15	4.51
8/4/2017	5.45		
10/3/2017	8.74	8.75	6.21
11/16/2017	6.15	9.33	4.45
5/16/2018		7	3.95
5/17/2018	6.69		
6/27/2018	5.8		
11/14/2018		5.43	3.79
11/15/2018	6.69		
1/11/2019	6.39		
5/22/2019	7.05	5.05	4.33
7/16/2019	7.33		
8/21/2019	7.17		
11/6/2019	6.66	5	4.08
5/18/2020	7.11	4.94	4.91
8/26/2020	7.31		
11/11/2020	7.28	4.54	4.98
3/1/2021	8.05		
5/24/2021	8.09	4.69	8.05
7/19/2021	8.01		
9/2/2021	8.03		
11/15/2021	7.78	3.56	5.87
2/1/2022	7.96		
3/2/2022	8.1		
5/12/2022	8.39	4.86	6.46
7/15/2022	8.5		
8/18/2022	10.52 (D)		
Median	7.11	4.86	4.51
LowerQ.	6.15	3.56	4.27
UpperQ.	8.03	5.43	5.87
Min	5.45	2.63	3.79
Max	10.52	9.33	8.05
Mean	7.159	5.072	4.98

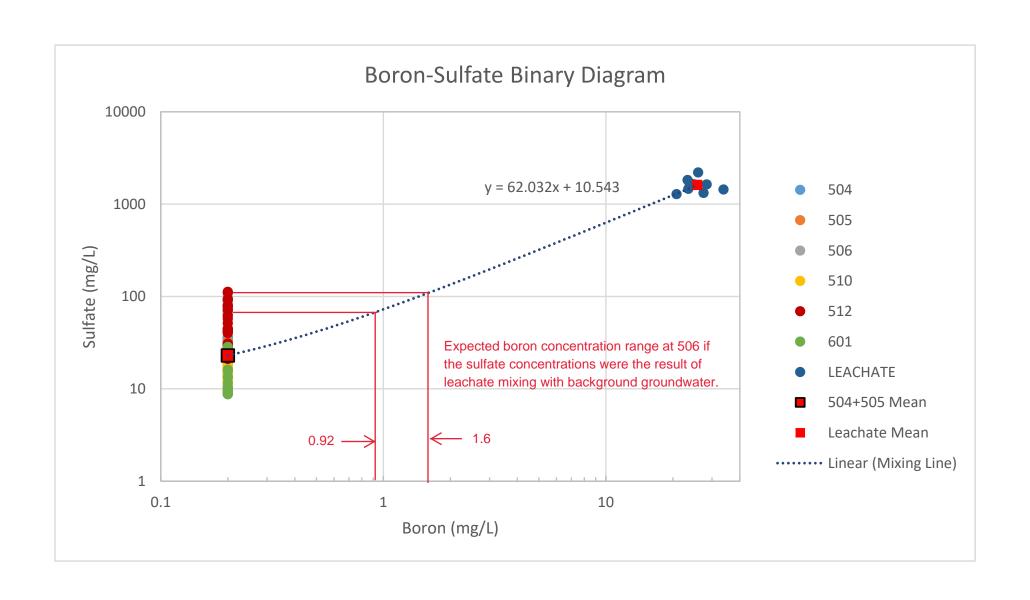
Box & Whiskers Plot

	Sibley Generating Station	n UWL Clie	ent: SCS Enginee	ers Data: Sibley	Printed 11/28/20	22, 11:22 AM			
Constituent	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
Chloride (mg/L)	506	31	7.159	1.118	0.2007	7.11	5.45	10.52	0
Chloride (mg/L)	515 (bg)	15	5.072	1.936	0.4998	4.86	2.63	9.33	0
Chloride (mg/L)	516 (bg)	15	4.98	1.174	0.3031	4.51	3.79	8.05	0

Box & Whiskers Plot


Constituent: Sulfate Analysis Run 11/28/2022 2:20 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley


_	^				— (
$\mathbf{P} \sim \mathbf{P}$	V.	١٨	/hic	kers	DIAt
DUX.	(X	Vν	/ 1 115	ハロコ	ГЮ


	Sibley Generating Station	on UWL (Client: SCS Engin	eers Data: Sible	y Printed 11/28/2	2022, 2:21 PM			
Constituent	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Sulfate (mg/L)	506	30	80.12	10.92	1.993	77.7	64.8	102	0
Sulfate (mg/L)	515 (bg)	14	32.39	24.22	6.474	21.4	14.2	93.9	0

Appendix G

Binary Plots

APPENDIX D

LABORATORY ANALYTICAL REPORTS

- February 2022 First verification sampling for the Fall 2021 detection monitoring event.
- March 2022 Second verification sampling for the Fall 2021 detection monitoring event.
- May 2022 Spring 2022 semiannual detection monitoring sampling event.
- July 2022 First verification sampling for the Spring 2022 detection monitoring sampling event.
- August 2022 Second verification sampling for Spring 2022 detection monitoring sampling event.
- November 2022 Fall 2022 semiannual detection monitoring sampling event.

Pace Analytical® ANALYTICAL REPORT

February 08, 2022

SCS Engineers - KS

Sample Delivery Group: L1457366

Samples Received: 02/02/2022

Project Number: 27213169.21 - G

Description: Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Ss

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page								
Tc: Table of Contents								
Ss: Sample Summary	3							
Cn: Case Narrative	4							
Sr: Sample Results	5							
MW-505 L1457366-01	5							
MW-506 L1457366-02	6							
MW-510 L1457366-03	7							
MW-512 L1457366-04	8							
DUPLICATE L1457366-05	9							
Qc: Quality Control Summary	10							
Gravimetric Analysis by Method 2540 C-2011	10							
Wet Chemistry by Method 9056A	11							
Metals (ICP) by Method 6010D								
GI: Glossary of Terms								
Al: Accreditations & Locations								
Sc: Sample Chain of Custody								

PAGE:

2 of 16

SAMPLE SUMMARY

			Collected by	Collected date/time		
MW-505 L1457366-01 GW			Matt Vander Puttey	02/01/22 11:30	02/02/22 09	9:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1812756	1	02/03/22 14:16	02/03/22 15:36	MMF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1457366-02 GW			Matt Vander Puttey	02/01/22 12:35	02/02/22 09	9:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1812605	1	02/03/22 18:59	02/03/22 18:59	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-510 L1457366-03 GW			Matt Vander Puttey	02/01/22 13:10	02/02/22 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1812605	1	02/03/22 19:13	02/03/22 19:13	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1457366-04 GW			Matt Vander Puttey	02/01/22 13:45	02/02/22 09	9:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1812756	1	02/03/22 14:16	02/03/22 15:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1812605	1	02/03/22 19:28	02/03/22 19:28	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1812605	5	02/04/22 10:07	02/04/22 10:07	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1811672	1	02/03/22 12:20	02/03/22 19:08	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1457366-05 GW			Matt Vander Puttey	02/01/22 13:45	02/02/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1812756	1	02/03/22 14:16	02/03/22 15:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1812605	1	02/03/22 20:26	02/03/22 20:26	LBR	Mt. Juliet, TN

WG1812605

WG1811672

5

02/04/22 10:34

02/03/22 12:20

02/04/22 10:34

02/03/22 20:01

LBR

CCE

Mt. Juliet, TN

Mt. Juliet, TN

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010D

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

uph law

DATE/TIME:

SAMPLE RESULTS - 01

L1457366

Collected date/time: 02/01/22 11:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RI	DL	Dilution	Analysis	Batch
Analyte	ug/l	uç	g/l		date / time	
Dissolved Solids	182000	10	000	1	02/03/2022 15:36	WG1812756

SAMPLE RESULTS - 02

Collected date/time: 02/01/22 12:35

L1457366

Wet Chemistry by Method 9056A

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ug/l		date / time	
Chloride	7960	1000	1	02/03/2022 18:59	WG1812605
Sulfate	92900	5000	1	02/03/2022 18:59	WG1812605

SAMPLE RESULTS - 03

Collected date/time: 02/01/22 13:10

L1457366

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Sulfate	14400		5000	1	02/03/2022 19:13	WG1812605

SAMPLE RESULTS - 04

Collected date/time: 02/01/22 13:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	516000		10000	1	02/03/2022 15:36	WG1812756

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9140		1000	1	02/03/2022 19:28	WG1812605
Sulfate	104000		25000	5	02/04/2022 10:07	WG1812605

Cn

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	110000	V	1000	1	02/03/2022 19:08	WG1811672

DUPLICATE

SAMPLE RESULTS - 05

Collected date/time: 02/01/22 13:45

1457366

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	524000		10000	1	02/03/2022 15:36	WG1812756

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9220		1000	1	02/03/2022 20:26	WG1812605
Sulfate	105000		25000	5	02/04/2022 10:34	WG1812605

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	111000		1000	1	02/03/2022 20:01	WG1811672

Cn

QUALITY CONTROL SUMMARY

L1457366-01,04,05

Gravimetric Analysis by Method 2540 C-2011

Method Blank (MB)

(MB) R3757713-1	02/03/22 15:36

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1457354-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1457354-01 02/03/22 15:36 • (DUP) R3757713-3 02/03/22 15:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1130000	1150000	1	176		5

L1457366-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1457366-04 02/03/22 15:36 • (DUP) R3757713-4 02/03/22 15:36

(00) 2110/000 01 02/00/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	516000	525000	1	1.73		5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3757713-2 02/03/22 15:36

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1457366-02,03,04,05

Method Blank (MB)

(MB) R3757158-1 02/0	03/22 09:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		379	1000	
Sulfate	U		594	5000	

L1456954-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1890	1930	1	1.62		15

L1457366-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1457366-04 02/03/22 19:28 • (DUP) R3757158-6 02/03/22 19:42

(00) 2: 10/000 0: 02/	00/22 10:20 (20:	,	. 02,00,21	= .0=		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	9140	9220	1	0.876		15
Sulfate	112000	112000	1	0.452	Е	15

L1456954-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1456954-02 02/03/22 21:10 • (DUP) R3757158-9 02/03/22 21:53

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Ana	llyte	ug/l	ug/l		%		%
Sulf	ate	ND	ND	5	0.000		15

L1457366-04 Original Sample (OS) • Duplicate (DUP)

(OS) I 1/157366-0/1 02/04/22 10:07 • (DLIP) P3757158-10 02/04/22 10:22

(US) L1457300-U4 U2/U4/	/22 10.07 • (DUF	7) K3/3/136-10) 02/04/2	.2 10.22		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	104000	104000	5	0.281		15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1457366-02,03,04,05

Laboratory Control Sample (LCS)

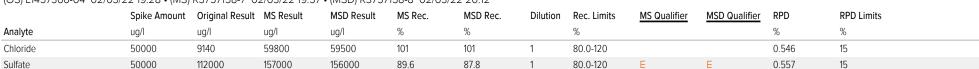
(LCS) R3757158-2 02/03/22 09:

(===, ==, ==, ==,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39500	98.6	80.0-120	
Sulfate	40000	39600	99.0	80.0-120	

L1456954-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1456954-02 02/03/22 13:53 • (MS) R3757158-4 02/03/22 14:23 • (MSD) R3757158-5 02/03/22 14:37

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	1890	51900	51400	100	99.0	1	80.0-120			0.932	15



[†]Cn

L1457366-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1457366-04 02/03/22 19:28 • (MS) R3757158-7 02/03/22 19:57 • (MSD) R3757158-8 02/03/22 20:12

GI

QUALITY CONTROL SUMMARY

L1457366-04,05

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3756787-1 02/0	3/22 19:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	369	<u>J</u>	79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3756787-2 02/03/2	22 19:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9450	94.5	80.0-120	

⁶Qc

(OS) L1457366-04 02/03/22 19:08 • (MS) R3756787-4 02/03/22 19:13 • (MSD) R3756787-5 02/03/22 19:16

,	Spike Amount	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Calcium	10000	110000	118000	119000	72.9	85.5	1	75.0-125	V		1.06	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	a Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:					Δ	Analysis /	Contair	per / Pre	servative		Chain of Custody Page of			
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W.	s Payable 110th Stree d Park, KS 6		Pres Chk	7								Pace PEOPLE ADVANCING SCIENCE MT JULIET, TN			
Report to: Jason Franks		,	Email To: jfranks@sc		m;jay.martin@												12065 Lebanon Rd Mc Submitting a sample vi	the state of the s
Project Description: Sibley Generating Station		City/State Collected:		MO	Please PT MT			res									Pace Terms and Condit	
Phone: 913-681-0030	27213169			AQUAOPI			NO3	125mlHDPE-NoPres			4						SDG# /9	9 /366
Collected by (print): Matt Vander Pertte	Site/Facility I	D#		P.O. #			DPE-H	mIHD	VoPre	res							Acctnum: AQ	* /
Collected by (signature):	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT			Quote #	sults Needed		6010 250mlHDPE-HNO3	504 125	125mlHDPE-NoPres	PE NoPres							Template: T11 Prelogin: P90 PM: 206 - Jeff	0453
Immediately Packed on Ice N Y	Three I	ay10 D	ay (Rad Only)		d	No. of	6010	Chloride, S	125m	1L-HDPE							PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Ca-	Chlo	504	TDS							Remarks	Sample # (lab only)
MW-505	Grab	GW		62/611.	1130	1				X								701
MW-506	Grab	GW	-		1235	1	1	X										1-02
MW-510	Grab	GW		02/01/	22 1310	0 1	1 1 1 1		X								1	-03
MW-512	Grab	GW			1345		X	- X		X	2							-04
MW-512 MS/MSD		GW			12 1345		X	X										
DUPLICATE	Grab	GW					X	X		X								-05
	Grub	GW		02/61/	1345	2	^	- "		1	1							
																	le Peerint C	nocklijat
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:									pH Flow		_ Tem			COC S: Bottle	eal Project igned/ses arr	Le Receipt Clesent/Intact Accurate: ive intact: tles used:	
DW Drinking Water	amples returned_UPS FedEx			Tr	acking #										Suffic VOA Z	cient ero He	volume sent: If Applicab adspace:	le y N
Relinquished by: (Signature)	,	ate:	Time	315 Re	ceived by: (Sign	nature)				Trip Blar	nk Recei		es/No/ HCL/Meo TBR	н	RAD S	creen	n Correct/Ch <0.5 mR/hr:	N
Relinquished by : (Signature)		Pate:	Time		eceived by: (Sign	nature)			1	Temp:	1	C Bott	les Receive	ed:	If prese	ervation	required by Lo	gin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	e: Re	eceived for lab k	Ny: (Signa	ture)	_6	5	Date:/	62	Tim	193	e	Hold:			Condition: NCF OK

Pace Analytical® ANALYTICAL REPORT

March 15, 2022

SCS Engineers - KS

Sample Delivery Group: L1467576

Samples Received: 03/03/2022

Project Number: 27213169.21 - G

Description: Sibley Generating Station

Site: SIBLEY ENERGY

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Jeff Carr Project Manager

Tubb law

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-505 L1467576-01	5
MW-506 L1467576-02	6
MW-512 L1467576-03	7
DUPLICATE L1467576-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-505 L1467576-01 GW			Britta Coleman	03/02/22 11:45	03/03/22 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1831040	1	03/11/22 16:16	03/11/22 18:01	MMF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1467576-02 GW			Britta Coleman	03/02/22 11:05	03/03/22 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1827629	1	03/05/22 16:23	03/05/22 16:23	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1467576-03 GW			Britta Coleman	03/02/22 09:55	03/03/22 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1829065	1	03/08/22 13:02	03/08/22 17:24	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1827629	1	03/05/22 16:36	03/05/22 16:36	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1467576-04 GW			Britta Coleman	03/02/22 10:00	03/03/22 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1829065	1	03/08/22 13:02	03/08/22 17:24	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1827629	1	03/05/22 17:25	03/05/22 17:25	KEG	Mt. Juliet, TN

WG1827629

5 03/05/22 17:38

03/05/22 17:38 KEG

Mt. Juliet, TN

Wet Chemistry by Method 9056A

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

up lan

SAMPLE RESULTS - 01

L146757

Collected date/time: 03/02/22 11:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	185000	P1	50000	1	03/11/2022 18:01	WG1831040	

SAMPLE RESULTS - 02

Collected date/time: 03/02/22 11:05

L1467576

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	8100		1000	1	03/05/2022 16:23	WG1827629
Sulfate	92900		5000	1	03/05/2022 16:23	WG1827629

SAMPLE RESULTS - 03

Collected date/time: 03/02/22 09:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	513000		10000	1	03/08/2022 17:24	WG1829065

⁴Cn	

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	6610		1000	1	03/05/2022 16:36	WG1827629
Sulfate	86800		5000	1	03/05/2022 16:36	WG1827629

DUPLICATE

Analyte

Chloride

Sulfate

SAMPLE RESULTS - 04

Collected date/time: 03/02/22 10:00

Result

ug/l

8930

104000

Qualifier

RDL

ug/l

1000

25000

Gravimetric Analysis by Method 2540 C-2011

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	508000		10000	1	03/08/2022 17:24	WG1829065

Dilution

1

5

Analysis

date / time

03/05/2022 17:25

03/05/2022 17:38

Batch

WG1827629

WG1827629

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1467576-03,04

Method Blank (MB)

(MB) R3768554-1 ((MB) R3768554-1 03/08/22 17:24					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Dissolved Solids	21000		10000	10000		

³Ss

L1467564-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1467564-02 03/08/22 17:24 • (DUP) R3768554-3 03/08/22 17:24

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	846000	870000	1	2.80		5

L1467564-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1467564-03 03/08/22 17:24 • (DUP) R3768554-4 03/08/22 17:24

	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	744000	791000	1	6.08	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3768554-2 03/08/22 17:24

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8240000	93.6	77 4-123

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1467576-01

Method Blank (MB)

(MB) R3769589-1	03/11/22 18:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1467207-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1467207-03 03/11/22 18:01 • (DUP) R3769589-3 03/11/22 18:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	3520000	3400000	1	3.47		5	

L1467576-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1467576-01 03/11/22 18:01 • (DUP) R3769589-4 03/11/22 18:01

(00, -0.000)	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	185000	135000	1	31.3	<u>P1</u>	5

Laboratory Control Sample (LCS)

(LCS) R3769589-2 03/11/22 18:01

QUALITY CONTROL SUMMARY

L1467576-02,03,04

Wet Chemistry by Method 9056A Method Blank (MB)

(MB) R3767360-1 03/05/22 09:36						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Chloride	U		379	1000		
Sulfate	U		594	5000		

L1467576-03 Original Sample (OS) • Duplicate (DUP)

(00) 14407570 00	00/05/00 10:00	(DLID) DOZCZOCO O	00/05/00 10:40
(US) L146/5/6-U3	03/05/22 16:36	(DUP) R3767360-3	03/05/22 16:48

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6610	6180	1	6.68		15
Sulfate	86800	86000	1	0.950		15

DUP RPD Limits % 15 15

L1467834-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1467834-08 03/05/22 21:34 • (DUP) R3767360-6 03/05/22 21:47

84200

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier
Analyte	ug/l	ug/l		%	
Chloride	9610	9900	1	2.97	

84000

П	ΑI	
П		
Н		
		_

Laboratory Control Sample (LCS)

(LCS) P3767360-2 03/05/22 09:48

Sulfate

(LC3) K3/0/300-2 03	(LC3) K3/0/300-2 03/03/22 03.46								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Chloride	40000	38200	95.5	80.0-120					
Sulfate	40000	38500	96.2	80.0-120					

L1467576-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.224

/OSUL1467576 03 03/05/22 16:36 - (MS) P3767360 4 03/05/22 17:00 - (MSD) P3767360 5 03/05/22 17:13

(O3) E1407370-03 03/03/22 10.30 • (M3) K3707300-4 03/03/22 17.00 • (M3D) K3707300-5 03/03/22 17.13												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6610	57700	56700	102	100	1	80.0-120			1.70	15
Sulfate	50000	86800	133000	131000	91.8	88.3	1	80.0-120	<u>E</u>	<u>E</u>	1.34	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1467576-02,03,04

L1467834-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1467834-08 03/05/22 21:34 • (MS) R3767360-8 03/05/22 22:24 • (MSD) R3767360-9 03/05/22 22:37

(00) 21.10/00 1 00 00/00/22 21.0 1 (mo) 10/00/22 21.2 1 (mo) 10/00/22 21.2 1 (mo)												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	9610	106000	106000	193	193	1	80.0-120	<u>E J5</u>	<u>E J5</u>	0.00395	15
Sulfate	50000	84200	175000	175000	181	181	1	80.0-120	<u>E J5</u>	<u>E J5</u>	0.0212	15

Sample Narrative:

MS: SAMPLE DOUBLE SPIKED
MSD: SAMPLE DOUBLE SPIKED

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIC VIGILOTIS GIT	a Demittions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: 27213169.21 - G L1467576 03/15/22 16:28 SCS Engineers - KS 13 of 16

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Info	rmation:							Analysis	Contair	ner / Pr	eservative	Personne		Chain of Custody	Page _ of _	
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts 8575 W. Overland	110th S	treet	10	Pres Chk										PEOPLE	ICE*	
Report to: Jason Franks				csengineer	rs.com;ja	ay.martin@ev	vergy.c										12065 Lebanon Rd Mou Submitting a sample via	this chain of custody	
Project Description: Sibley Generating Station		City/State Collected:	ibku	om, I)	Please Ci		res									Pace Terms and Condition https://info.pacelabs.co	ment and acceptance of the ons found at: m/hubfs/pas-standard-	
Phone: 913-681-0030	Client Project # 27213169.21 - G			AQUAOPKS-SIBLEY				E-NoP									SDG# 1467576 B218		
Collected by (print):	Site/Facility ID	Rush? (Lab MUST Be Notified) — Same Day Five Day — Next Day 5 Day (Rad Only) — Two Day 10 Day (Rad Only) Three Day						Chloride, SO4 125mlHDPE-NoPri	1L-HDPE NoPres								Acctnum: AQUAOPKS		
Collected by (signature): Immediately Packed on Ice N Y	Same Da						No.										Prelogin: P900 PM: 206 - Jeff C	8206	
Sample ID	Comp/Grab	Matrix *	Depth	Da	ate	Time	Cntrs	Chlori	TDS 11								Shipped Via:	Sample # (lab only)	
MW-505	Imb	GW	-	13/2	122	1145	1		X									-01	
MW-506	Conso	GW	-	312	122	11105	1	X										-02	
MW-512	Grah	GW	-	3/2	122	0955	2	X	X									-03	
MW-512 MS/MSD	Chan	GW	-	312	122	1005	1-	X											
DUPLICATE	Chap	GW		3/2	122	1000	2	. X	X				-					-04	
																		1 3	
							1										-		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flow		_ Tem		COC S Bottle	eal Prigned, es arr	ole Receipt Ch resent/Intact: /Accurate: rive intact: ttles used:		
OT - Other	Samples returned UPS FedEx			ing# 3	130	50 4	29	4	3884				Sufficient volume sent: If Applicable VOA Zero Headspace: Y						
Relinquished by : (Signature)	Time: Received			Received by: (Signature)					Trip Bla		HCL / MeoH TBR	Preservation Correct/Checked: RAD Screen <0.5 mR/hr:							
Relinquished by : (Signature)	Da	ate:	Time	e:	Receiv	ved by: (Signa	ture)				Temp: [3447°	C Bot	tles Received:	If prese	ervatio	n required by Log	gin: Date/Time	
Relinquished by : (Signature)	Da	ate:	Time	e:		ON ON O			to		Date: 3/3/	122	Tin	915	Hold:			Condition: NCF / OK	

Company Name/Address:		Billing Information:						-		Analysis / Container / Preservative							Chain of Custoo	ly Page of C				
SCS Engineers - KS				s Payable			Pres Chk		7									-	,			
8575 W. 110th Street Overland Park, KS 66210				110th Str d Park, KS		0	Crik										000000000000000000000000000000000000000	PEOP	ACE* LE ADVANCING SCIENCE			
Report to: Jason Franks			Email To: jfranks@scsengineers.com;jay.martin@ev						03	Pres								MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard- terms.pdf				
Project Description: City/State Collected:			SIDILA MO Please Circ					res	NH-3	PE-No												
Phone: 913-681-0030 Client Project # 27213169.21 - G		Lab Project # AQUAOPKS-SIBLEY				125mIHDPE-NoPres	250mIHDPE-HN03	125mlHDPE-NoPres								SDG# 1967576						
Collected by (print); Site/Facility ID #		6 Mr	99	P.O. #				SmIHD	6010 250	905612								Acctnum: AC				
Collected by (signature):	Rush? (L Same Da Next Da Two Day Three D	y 5 Day / 10 D		Quote #	Results	Needed	No.	ALKCA	Mg, Na - 6	Chloride - 9								Template: T2 Prelogin: P9 PM: 206 - Jef PB:	08208			
Packed on Ice N Y Sample ID	Comp/Grab	Matrix *	Depth	Date	e	Time	of Cntrs	ALKBI,	Ca, K, P	S04, C								Shipped Via:	FedEX Ground Sample # (lab only			
MW-505	[GNO/D	GW	-	3121	22	1145	3	X	X	X									1-05			
MW-506	Grap	GW	-	3/21	122	1105	2	Х	X					.•					-06			
MW-512	(0x0/)	GW		3/21	22	0955	2	X	X				•						-0/			
														-14								
														5					•			
		-												100								
														1.5								
																	•					
							1															
																	Sampl	e Receipt (Checklist			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flov		_ Tem			COC Si Bottle Correc	eal Pro igned/A es arri	esent/Intac Accurate: ive intact: tles used:	E: NP Y N			
DW Drinking Water	Samples returned UPS FedEx				Trackin	ng#		Sufficie								If Applicable Headspace: Y N						
Relinguished by : (Signature)	Da	Date: Time:				ime: Received by: (Signat					Trip Blank Received: Yes / No HCL / MeoH TBR					Preservation Correct/Checked: A RAD Screen <0.5 mR/hr:						
Relinquished by : (Signature)	Da	ate:	Time		Receive	ed by: (Signat	ure)				Temp:	3AA7	C,	tles Receiv	red:	If prese	rvation	tion required by Login: Date/Time				
Relinquished by : (Signature)	Da	ite:	Time	:	Receive	ed for lab by	(Signat	ture)	ks	2	Date: 3/3	122	Tin	91°	5	Hold:			Condition: NCF OK			

Pace Analytical® ANALYTICAL REPORT

March 09, 2022

SCS Engineers - KS

Sample Delivery Group: L1467592

Samples Received: 03/03/2022

Project Number: 27213169.21 - G

Description: Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr

Tubb law

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-505 L1467592-01	5
MW-506 L1467592-02	6
MW-512 L1467592-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 2320 B-2011	8
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010D	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	te/time	
MW-505 L1467592-01 GW			Britta Coleman	03/02/22 11:45	03/03/22 09:15		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 2320 B-2011	WG1828044	1	03/06/22 09:03	03/06/22 09:03	ARD	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1827867	1	03/05/22 18:15	03/05/22 18:15	KEG	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1828304	1	03/08/22 11:09	03/09/22 01:11	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received dat	te/time	
MW-506 L1467592-02 GW			Britta Coleman	03/02/22 11:05	03/03/22 09:15		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 2320 B-2011	WG1828044	1	03/06/22 09:10	03/06/22 09:10	ARD	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1828304	1	03/08/22 11:09	03/09/22 01:14	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received dat	te/time	
MW-512 L1467592-03 GW			Britta Coleman	03/02/22 09:55	03/03/22 09	:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 2320 B-2011	WG1828044	1	03/06/22 09:13	03/06/22 09:13	ARD	Mt. Juliet, TN	

WG1828304 1 03/08/22 11:09

03/09/22 01:17

ZSA

Mt. Juliet, TN

Metals (ICP) by Method 6010D

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

DATE/TIME:

03/09/22 16:07

PAGE:

4 of 14

Jeff Carr Project Manager

uph law

Collected date/time: 03/02/22 11:45

Wet Chemistry by Method 2320 R-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	107000		20000	1	03/06/2022 09:03	WG1828044
Alkalinity Carbonate	ND		20000	1	03/06/2022 09:03	WG1828044

L1467592-01 WG1828044: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1180		1000	1	03/05/2022 18:15	WG1827867
Sulfate	16800		5000	1	03/05/2022 18:15	WG1827867

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	32800		1000	1	03/09/2022 01:11	WG1828304
Magnesium	9320		1000	1	03/09/2022 01:11	WG1828304
Potassium	ND		2000	1	03/09/2022 01:11	WG1828304
Sodium	9000	В	3000	1	03/09/2022 01:11	WG1828304

Gl

Sample Narrative:

SAMPLE RESULTS - 02

Wet Chemistry by Method 2320 B-2011

Collected date/time: 03/02/22 11:05

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	293000		20000	1	03/06/2022 09:10	WG1828044
Alkalinity, Carbonate	ND		20000	1	03/06/2022 09:10	WG1828044

Cn

Metals (ICP) by Method 6010D

L1467592-02 WG1828044: Endpoint pH 4.5 Headspace

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	94600		1000	1	03/09/2022 01:14	WG1828304
Magnesium	40000		1000	1	03/09/2022 01:14	WG1828304
Potassium	ND		2000	1	03/09/2022 01:14	WG1828304
Sodium	9440	В	3000	1	03/09/2022 01:14	WG1828304

Sample Narrative:

SAMPLE RESULTS - 03

Collected date/time: 03/02/22 09:55

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	355000		20000	1	03/06/2022 09:13	WG1828044
Alkalinity,Carbonate	ND		20000	1	03/06/2022 09:13	WG1828044

Cn

Metals (ICP) by Method 6010D

L1467592-03 WG1828044: Endpoint pH 4.5 Headspace

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	118000		1000	1	03/09/2022 01:17	WG1828304
Magnesium	41600		1000	1	03/09/2022 01:17	WG1828304
Potassium	2400	В	2000	1	03/09/2022 01:17	WG1828304
Sodium	11300	В	3000	1	03/09/2022 01:17	WG1828304

QUALITY CONTROL SUMMARY

L1467592-01,02,03

Wet Chemistry by Method 2320 B-2011

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity.Carbonate	U		8450	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

Ss

Method Blank (MB)

(MB) R3766932-3 03/06	5/22 08:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity,Carbonate	U		8450	20000

GI

Sample Narrative:

BLANK: Endpoint pH 4.5

L1467523-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1467523-03 03/06/22 08:19 • (DUP) R3766932-4 03/06/22 08:22

(,	Original Result	•			DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	343000	346000	1	0.725		20
Alkalinity,Carbonate	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1467592-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1467592-01 03/06/22 09:03 • (DUP) R3766932-5 03/06/22 09:07

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	107000	108000	1	1.16		20
Alkalinity, Carbonate	ND	ND	1	0.000		20

QUALITY CONTROL SUMMARY

L1467592-01,02,03

Wet Chemistry by Method 2320 B-2011

L1467592-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1467592-01 03/06/22 09:03 • (DUP) R3766932-5 03/06/22 09:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%

²Tc

Sample Narrative:

OS: Endpoint pH 4.5 DUP: Endpoint pH 4.5

⁴Cn

SDG:

L1467592

QUALITY CONTROL SUMMARY

L1467592-01

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3767047-1	03/05/22 10:05

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Sulfate	U		594	5000

L1466573-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1466573-01 03/05/22 12:32 • (DUP) R3767047-3 03/05/22 12:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	16200	16200	1	0.00616		15
Sulfate	18200	18400	1	0.628		15

(OS) L1467119-01 03/05/22 19:14 • (DUP) R3767047-6 03/05/22 19:29

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	115000	114000	20	0.633		15
Sulfate	311000	310000	20	0.278		15

Laboratory Control Sample (LCS)

(LCS) R3767047-2 03/05/22 10:20

(LC3) K3/0/04/-2 03/0	33/22 10.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39100	97.8	80.0-120	
Sulfate	40000	39000	97.5	80.0-120	

L1467119-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1467119-01 03/05/22 19:14 • (MS) R3767047-7 03/05/22 19:44 • (MSD) R3767047-8 03/05/22 19:59

(03) E140/113-01 03/03/22 13:14 • (MS) K3/07/04/-7 03/03/22 13:44 • (MSD) K3/07/04/-8 03/03/22 13:33												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	115000	157000	156000	83.8	82.9	20	80.0-120			0.286	15
Sulfate	50000	311000	346000	344000	70.0	65.2	20	80.0-120	\vee	$\underline{\vee}$	0.701	15

QUALITY CONTROL SUMMARY

L1467592-01,02,03

Method Blank (MB)

(MB) R3767714-1 03/09/22 00:26

Metals (ICP) by Method 6010D

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000
Magnesium	U		85.3	1000
Potassium	372	<u>J</u>	261	2000
Sodium	1740	J	504	3000

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3767714-2 03/09/22 00:28

(ECS) NS707714 2 03/03	722 00.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9410	94.1	80.0-120	
Magnesium	10000	9440	94.4	80.0-120	
Potassium	10000	9470	94.7	80.0-120	
Sodium	10000	11000	110	80.0-120	

⁸Al

L1467557-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1467557-03 03/09/22 00:31 • (MS) R3767714-4 03/09/22 00:37 • (MSD) R3767714-5 03/09/22 00:39

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	114000	123000	122000	86.8	80.0	1	75.0-125			0.558	20
Magnesium	10000	7500	16600	16500	90.9	89.5	1	75.0-125			0.867	20
Potassium	10000	ND	10300	10300	90.7	91.0	1	75.0-125			0.274	20
Sodium	10000	9620	18500	18600	89.1	89.9	1	75.0-125			0.446	20

DATE/TIME:

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Ср

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Infor	mation:		麗 麗月	E EXERT		A	palvsis	/Contain	per / Pre	eservative			Chain of Custod	y Page of C	
SCS Engineers - KS 8575 W. 110th Street			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			Pres Chk		2								- PE	OCE SCIENCE	
Overland Park, KS 66210 Report to: Jason Franks			Email To: ifranks@scsengineers.com;jay.martin@e		Devergy.		03	Pres							12065 Lebanon Rd Mi	ULIET, TN ount Juliet, TN 37122 is this chain of custody		
Project Description:		City/State		Please C		Circle:		HN	No							constitutes acknowled Pace Terms and Condi	igment and acceptance of the tions found at:	
Sibley Generating Station		Collected:	110194	1 11 10	COLUMN TO SERVICE STATE OF THE	DET	Pre	PE.	OPE							terms.pdf	com/hubfs/pas-standard-	
Phone: 913-681-0030	27213169.			AQUAOPK			PE-No	250mIHDPE-HN03	SmHDPE-NoPres							SDG# 70	16/574	3/4/22
Collected by (print);	Site/Facility II	"Fur	94	P.O. #			mIHD	6010 250	905612							Acctnum: AQ	467592 WAOPKS	1714
Collected by (signature): Immediately Packed on Ice N Y		10 D		Quote #	sults Needed	No.	ALKBI, ALKCA 125mIHDPE-NoPres	Mg, Na - 60	Chloride - 90							Prelogin: P90 PM: 206 - Jeff PB:	08208 F Carr	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cote	KKBI,	Ca, K,	504,0							Shipped Via: I	Sample # (lab only)	
MW-505	Paran	GW	T -	312/2	2 1145) 3	200 E00E00A	X	X								1-05	1-01
MW-506	ROYONO	GW	-	3/2/2	2 1100) 2	X	X					•				-06	1-02
MW-512	Grab	GW		3/2/2	2 099	5 2	X	X									-01	-53
											1							
				-														
							- BE											
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH		_ Tem		CO	C Seal C Sign ttles	Prosent/Intac ed/Accurate: errive intact: bottles used:	ti Aip Y	\$ \$ \$ \$
DW - Drinking Water OT Other	Samples returnedUPSFedE			Tr	acking #									Su	fficie A Zero	nt volume sent If Applica Headspace:	ble y	4
Relinguished by : (Signature)	Americana estendo revejas	3/2/21	Time	130 R	eceived by: (Sig	gnature)							Yes / No HCL / Med TBR	H Pr	eserva D Scre	tion Correct/C en <0.5 mR/hr:	2 -	
Relinguished by : (Signature)		Date:	Time	e; Re	eceived by: (Sig	gnature)				Temp:	3AA7	°C 80	ttles Receive	ed: If p	oreserva	ation required by L		
Relinquished by : (Signature)	T. C.	Date:	Time	e: Ri	Received for lab	by (Sign	ature)	1K		Date:	3/2-	Tir	me: 91<	Но	old:		NCF OK	

Pace Analytical® ANALYTICAL REPORT

June 08, 2022

SCS Engineers - KS

Sample Delivery Group: L1493660

Samples Received: 05/13/2022

Project Number: 27213169.22-A

Description: Evergy - Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Αl

Sc

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-504 L1493660-01	6
MW-505 L1493660-02	7
MW-506 L1493660-03	8
MW-510 L1493660-04	9
MW-512 L1493660-05	10
MW-601 L1493660-06	11
DUPLICATE L1493660-07	12
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 9056A	14
Metals (ICP) by Method 6010D	16
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

PAGE:

2 of 20

SAMPLE SUMMARY

MW-504 L1493660-01 GW			Collected by Whit Martin	Collected date/time 05/12/22 10:50	Received da 05/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874948	1	06/07/22 21:44	06/07/22 21:44	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1866295	1	05/21/22 10:12	05/23/22 01:04	CCE	Mt. Juliet, T
			Collected by	Collected date/time		
MW-505 L1493660-02 GW			Whit Martin	05/12/22 11:30	05/13/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874948	1	06/07/22 21:58	06/07/22 21:58	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1866295	1	05/21/22 10:12	05/23/22 01:07	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-506 L1493660-03 GW			Whit Martin	05/12/22 12:10	05/13/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, 1
Wet Chemistry by Method 9056A	WG1874948	1	06/07/22 22:13	06/07/22 22:13	ELN	Mt. Juliet, 1
Metals (ICP) by Method 6010D	WG1866295	1	05/21/22 10:12	05/23/22 01:14	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-510 L1493660-04 GW			Whit Martin	05/12/22 15:10	05/13/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Cray impolying Amalysis by Mathaud 2F40 C 2011	WC10CC2E0	1	date/time	date/time 05/19/22 15:29	CIF	Mt. Juliet, T
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00		SJF	,
Wet Chemistry by Method 9056A	WG1874948	1 1	06/07/22 23:13 05/21/22 10:12	06/07/22 23:13 05/23/22 01:17	ELN CCE	Mt. Juliet, T Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1866295	ı	05/21/22 10.12	05/23/22 01.17	CCE	Mt. Juliet, 1
			Collected by	Collected date/time	Received da	te/time
MW-512 L1493660-05 GW			Whit Martin	05/12/22 13:55	05/13/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874948	1	06/07/22 23:28	06/07/22 23:28	ELN	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874948	5	06/07/22 23:43	06/07/22 23:43	ELN	Mt. Juliet, 1
Metals (ICP) by Method 6010D	WG1866295	1	05/21/22 10:12	05/23/22 01:20	CCE	Mt. Juliet, T
metals (ist) by metals a solid	110100233	•	03/21/22 10:12	00/20/22 01.20	002	mt. Janet, 1
			Collected by	Collected date/time	Received da 05/13/22 09:	
MW-601 L1493660-06 GW			Whit Martin	05/12/22 11:25	UD/13/22 U9:	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, 7
Wet Chemistry by Method 9056A	WG1874948	1	06/07/22 23:58	06/07/22 23:58	ELN	Mt. Juliet, 1
Matala (ICD) by Mathad CO10D	WC10CC207	4	0F/04/00 40-40	05/22/22 46:42	704	MA Lulias T

Metals (ICP) by Method 6010D

WG1866297

05/21/22 10:13

05/23/22 16:43

ZSA

Mt. Juliet, TN

SAMPLE SUMMARY

DUPLICATE L1493660-07 GW			Collected by Whit Martin	Collected date/time 05/12/22 11:30	Received date 05/13/22 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1866258	1	05/19/22 09:00	05/19/22 15:29	SJF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1874948	1	06/08/22 00:42	06/08/22 00:42	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1866295	1	05/21/22 10:12	05/23/22 01:23	CCE	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

Wubb law

Collected date/time: 05/12/22 10:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	171000		10000	1	05/19/2022 15:29	WG1866258

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ND		1000	1	06/07/2022 21:44	WG1874948
Fluoride	168		150	1	06/07/2022 21:44	WG1874948
Sulfate	29100		5000	1	06/07/2022 21:44	WG1874948

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:04	WG1866295
Calcium	28700		1000	1	05/23/2022 01:04	WG1866295

Collected date/time: 05/12/22 11:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	182000		10000	1	05/19/2022 15:29	WG1866258

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1200		1000	1	06/07/2022 21:58	WG1874948
Fluoride	162		150	1	06/07/2022 21:58	WG1874948
Sulfate	27200		5000	1	06/07/2022 21:58	WG1874948

Cn

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:07	WG1866295
Calcium	28900		1000	1	05/23/2022 01:07	WG1866295

Gl

Collected date/time: 05/12/22 12:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	463000		10000	1	05/19/2022 15:29	WG1866258

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8390		1000	1	06/07/2022 22:13	WG1874948
Fluoride	284		150	1	06/07/2022 22:13	WG1874948
Sulfate	99000		5000	1	06/07/2022 22:13	WG1874948

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:14	WG1866295
Calcium	89400		1000	1	05/23/2022 01:14	WG1866295

Collected date/time: 05/12/22 15:10 L14

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	475000		10000	1	05/19/2022 15:29	WG1866258

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3350		1000	1	06/07/2022 23:13	WG1874948
Fluoride	285		150	1	06/07/2022 23:13	WG1874948
Sulfate	15000		5000	1	06/07/2022 23:13	WG1874948

Cn

⁵Sr

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:17	WG1866295
Calcium	111000		1000	1	05/23/2022 01:17	WG1866295

Collected date/time: 05/12/22 13:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	548000		10000	1	05/19/2022 15:29	WG1866258

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8660		1000	1	06/07/2022 23:28	WG1874948
Fluoride	264		150	1	06/07/2022 23:28	WG1874948
Sulfate	112000		25000	5	06/07/2022 23:43	WG1874948

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:20	WG1866295
Calcium	111000		1000	1	05/23/2022 01:20	WG1866295

L1493660

Collected date/time: 05/12/22 11:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	394000		10000	1	05/19/2022 15:29	WG1866258

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3640		1000	1	06/07/2022 23:58	WG1874948
Fluoride	237		150	1	06/07/2022 23:58	WG1874948
Sulfate	13100		5000	1	06/07/2022 23:58	WG1874948

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 16:43	WG1866297
Calcium	100000		1000	1	05/23/2022 16:43	WG1866297

DUPLICATE

SAMPLE RESULTS - 07

L14

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 05/12/22 11:30

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	390000		10000	1	05/19/2022 15:29	WG1866258

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	3650		1000	1	06/08/2022 00:42	WG1874948
Fluoride	243		150	1	06/08/2022 00:42	WG1874948
Sulfate	11400		5000	1	06/08/2022 00:42	<u>WG1874948</u>

Cn

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/23/2022 01:23	WG1866295
Calcium	92600		1000	1	05/23/2022 01:23	WG1866295

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1493660-01,02,03,04,05,06,07

Method Blank (MB)

Analyte

Dissolved Solids

(MB) R3795376-1 (05/19/22 15:29		
	MB Result	MB Qualifier	MB MDL

MDL	MB RDL
	ua/I

Dilution DUP RPD

%

1.98

DUP Qualifier

5

1133000 01,02,03,01,03,00,0

 Analyte
 ug/l
 ug/l
 ug/l

 Dissolved Solids
 U
 10000
 10000

L1493988-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1493988-03 05/19/22 15:29 • (DUP) R3795376-3 05/19/22 15:29

ug/l

1020000

Original Result DUP Result

ug/l

998000

ŗ	DUP RPD Limits
	%

[†]Cn

L1493988-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1493988-05 05/19/22 15:29 • (DUP) R3795376-4 05/19/22 15:29

(00) 21400000 00 00/13/2	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2140000	2120000	1	0.939		5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3795376-2 05/19/22 15:29

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	2460000	2710000	110	81.7-118	

QUALITY CONTROL SUMMARY

L1493660-01,02,03,04,05,06,07

Mother of Diorels (MD)

(MB) R3800774-1 06/07/22 20:13

Wet Chemistry by Method 9056A

Method	l Blank i	(MB)
--------	-----------	------

Fluoride

Sulfate

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	11		379	1000

⁴Cn

U

(OS) L1493654-05 06/07/22 20:43 • (DUP) R3800774-3 06/07/22 20:58

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6460	6300	1	2.44		15
Fluoride	171	178	1	3.55		15
Sulfate	17900	17700	1	1.46		15

L1493674-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1493674-04 06/08/22 02:57 • (DUP) R3800774-7 06/08/22 03:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	5300	5240	1	1.28		15
Fluoride		640	1	0.141		15
Sulfate	ND	ND	1	200	<u>P1</u>	15

150

5000

64.0

594

Laboratory Control Sample (LCS)

(LCS) R3800774-2 06/07/22 20:28

(LC3) K3600774-2 00/07	722 20.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40800	102	80.0-120	
Fluoride	8000	8380	105	80.0-120	
Sulfate	40000	41100	103	80 0-120	

QUALITY CONTROL SUMMARY

L1493660-01,02,03,04,05,06,07

Wet Chemistry by Method 9056A

L1493654-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1493654-06_06/07/22_21:13 • (MS) R3800774-4_06/07/22_21:28

(03) E1433034 00 00/07/22 21:10 - (1113) 1/3000774 4 00/07/22 21:20												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	ug/l	ug/l	ug/l	%		%						
Chloride	50000	ND	50700	99.5	1	80.0-120						
Fluoride	5000	297	5460	103	1	80.0-120						
Sulfate	50000	25900	77400	103	1	80.0-120						

L1493660-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1493660-06 06/07/22 23:58 • (MS) R3800774-5 06/08/22 00:13 • (MSD) R3800774-6 06/08/22 00:27

(03) 11433000 00 00/0//	22 25.50 · (IVIS) N3000774 3	00/00/22 00.1	5 · (IVISB) 1(500	00/00	3/22 00.27						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3640	54000	54500	101	102	1	80.0-120			1.07	15
Fluoride	5000	237	5380	5340	103	102	1	80.0-120			0.715	15
Sulfate	50000	13100	65300	65400	104	105	1	80.0-120			0.246	15

PAGE:

QUALITY CONTROL SUMMARY

L1493660-01,02,03,04,05,07

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3794746-1 05/23/22 00:10 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

Laboratory Control Sample (LCS)

10000

(LCS) R3794746-2 05/23/22 00:13

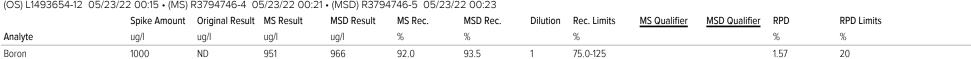
Calcium

(LCS) NS754740-2 05/25	/22 00.13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	920	92.0	80.0-120	
Calcium	10000	9230	92.3	80.0-120	

[†]Cn

GI

L1493654-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


101000

100000

73.7

(OS) L1493654-12 05/23/22 00:15 • (MS) R3794746-4 05/23/22 00:21 • (MSD) R3794746-5 05/23/22 00:23

93400

75.0-125

0.283

20

70.8

QUALITY CONTROL SUMMARY

L1493660-06

Metals (ICP) by Method 6010D Method Blank (MB)

(MB) R3795106-1 05/23/22 16:38 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

Laboratory Control Sample (LCS)

(LCS) R3795106-2 05/23/22 16:41											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Boron	1000	999	99.9	80.0-120							
Calcium	10000	10000	100	80.0-120							

[†]Cn

7 Gl

L1493660-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1493660-06 05/23/22 16:43 • (MS) R3795106-4 05/23/22 16:49 • (MSD) R3795106-5 05/23/22 16:51

(03) 11433000 00 03/23/2	55) E1433000 00 03/25/22 10.45 · (WS) NO/33100 + 03/25/22 10.45 · (WS)												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Boron	1000	ND	1030	1030	99.5	99.8	1	75.0-125			0.267	20	
Calcium	10000	100000	109000	108000	85.0	81.2	1	75 0-125			0.343	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	a Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

¹Cp

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

DATE/TIME:

06/08/22 15:26

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address:	to the first the second		Billing Info	rmation:				Maca		A	nalvsis /	Contai	ner / Presers	ative			Chain of Custody	Page of	
CS Engineers - KS 575 W. 110th Street verland Park, KS 66210	gineers - KS Acco		8575 W.	its i djubic			Pres Chk		8								1 /	RCC* ADVANCING SCIENCE	
eport to: ason Franks		By so we	Email To: jfranks@so	csenginee	rs.com;jay.martin@eve		vergy.c	Pres									12065 Lebanon Rd Mo Submitting a sample vi	this chain of custody	
roject Description: vergy - Sibley Generating Station		City/State Collected:	sible	an agraduate contract of the same of the s	0	Please Ci PT MT		DPE-NoPres	m								Pace Terms and Condit	constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard- terms.pdf	
hone: 913-681-0030	27213169		/	AQUA	oject # NOPKS-S	SIBLEY		SmIHD	ONH-								SDG# 119	213	
ollected by (print): Whit Martin	Site/Facility	ID#		P.O.#			The state of the s	12	250mIHDPE-HNO3	loPres							Acctnum: AQ	Miles of the second	
collected by (signature): Machine Machine mmediately	Same Next Two I	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only)			Quote # Date Results Needed S-Hd			(Cld, F, SO4)	6010 250m	250mlHDPE-NoPres	OmiHDPE-R						Template:T136014 Prelogin: P922359 PM: 206 - Jeff Carr PB:		
Packed on Ice N Y X Sample ID	Three		Depth		ate Time		of Cntrs	Anions	Ca -	TDS 25(Shipped Via: F	edEX Ground Sample # (lab only)	
лw-504	Grah	GW		15/	2/22	1050	3	X	X x	X	200							-01	
лw-505	Grad	25 2 2 2		5/1	2/22	1130	3	X	X	X								-02	
NW-506	Gral	DESCRIPTION OF THE PROPERTY OF		5/12	1/22	1210	3	X	Х	Х			7.00					-03	
1W-510	Grak			5/12	122	1510	3	X	Х	X								-04	
IW-512	Grak			5/12	122	1355	3	X	Х	X			2-20					-05	
AW-601 ,	Grak	and the control of the control of the control of	The same of the sa	5/12	1/22	1125	3	Х	X	X					120			-06°	
601 MS/MSD	Grab	g GW		5/12	/22	1130	3	X	X	X				1			Part Control	-06	
DUPLICATE	Gral	g GW		5/12	1/22	1130	3	X	X	Х				49/A				-07	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:							100 AM TO		-2.5-	pH Temp			Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: N					
DW - Drinking Water OT - Other	Samples returned UPS Fedi	ExCourier			Trackin		-	71	537	THE REAL PROPERTY.	7280				VOA Ze	ero He	volume sent: If Applicab adspace: on Correct/Che	Y_N	
Relinquished by: (Signature)	L. F.K	5/12/22	Z Time	755		ed by: (Signat	# - / _m		oF dest		Trip Blank	Recei	HCL / TBR	МеоН	RAD So	creen	<0.5 mR/hr:	N	
Relinquished by : (Signature)		Date:	Time	* 4	Receive	ed by: (Signat	ture)	1	a	- 4	Gtp.	41.4	Bottles Re	eceived:	If prese	ervation	required by Lo	gin: Date/Time	
Relinquished by : (Signature)	e esta	Date:	Time	Yes,	Receive	ed for lab by:	(Signat	ure)	14	21	Date: 5 3	1 .	Time:	100	Hold:			Condition: NCF / OK /	

Pace Analytical® ANALYTICAL REPORT

SCS Engineers - KS

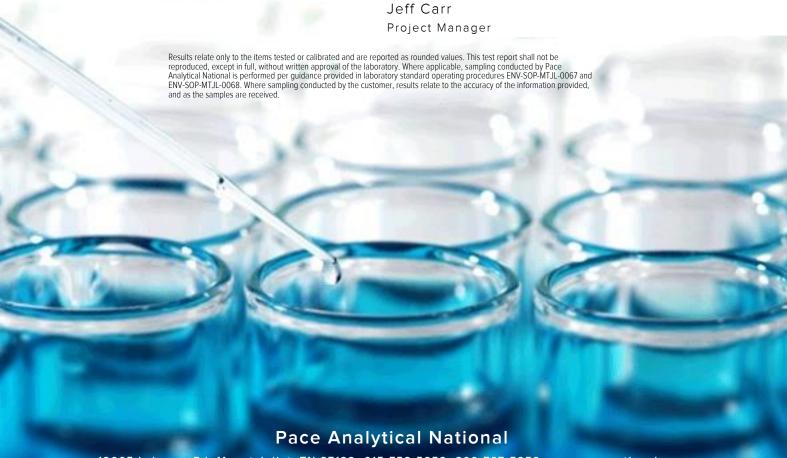
Sample Delivery Group:

Samples Received: 07/16/2022

Project Number: 27213169.22-1

Description: Evergy Sibley Gen Station GW 2022-23

L1515710


Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Entire Report Reviewed By:

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-505 L1515710-01	5
MW-506 L1515710-02	6
MW-512 L1515710-03	7
DUPLICATE 1 L1515710-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

			Collected by	Collected date/time				
MW-505 L1515710-01 GW			B. Coleman	07/15/22 13:45	07/16/22 09:	00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Gravimetric Analysis by Method 2540 C-2011	WG1899236	1	07/22/22 05:52	07/22/22 11:28	MMF	Mt. Juliet, TN		
Wet Chemistry by Method 9056A	WG1899118	1	07/22/22 11:01	07/22/22 11:01	ELN	Mt. Juliet, TN		
			Collected by	Collected date/time	Received da	te/time		
MW-506 L1515710-02 GW			B. Coleman	07/15/22 12:00	07/16/22 09:	00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Wet Chemistry by Method 9056A	WG1899118	1	07/22/22 11:15	07/22/22 11:15	ELN	Mt. Juliet, TN		
			Collected by	Collected date/time	Received da	te/time		
MW-512 L1515710-03 GW			B. Coleman	07/15/22 12:25	07/16/22 09:	00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Gravimetric Analysis by Method 2540 C-2011	WG1899236	1	07/22/22 05:52	07/22/22 11:28	MMF	Mt. Juliet, TN		
Wet Chemistry by Method 9056A	WG1899118	1	07/22/22 11:30	07/22/22 11:30	ELN	Mt. Juliet, TN		
			Collected by	Collected date/time	Received da	te/time		
DUPLICATE 1 L1515710-04 GW			B. Coleman	07/15/22 00:00	07/16/22 09:	00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Gravimetric Analysis by Method 2540 C-2011	WG1899236	1	07/22/22 05:52	07/22/22 11:28	MMF	Mt. Juliet, TN		

WG1899306

1

07/22/22 19:55

07/22/22 19:55 LBR

Mt. Juliet, TN

Wet Chemistry by Method 9056A

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

PAGE:

4 of 16

Jeff Carr Project Manager

up lan

Collected date/time: 07/15/22 13:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	180000		10000	1	07/22/2022 11:28	WG1899236

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	14000		5000	1	07/22/2022 11:01	WG1899118

MW-506

SAMPLE RESULTS - 02

Collected date/time: 07/15/22 12:00

L1515710

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	8500		1000	1	07/22/2022 11:15	WG1899118
Sulfate	102000		5000	1	07/22/2022 11:15	WG1899118

SAMPLE RESULTS - 03

Collected date/time: 07/15/22 12:25

.1515710

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	394000		10000	1	07/22/2022 11:28	WG1899236

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	3710		1000	1	07/22/2022 11:30	WG1899118
Sulfate	11700		5000	1	07/22/2022 11:30	WG1899118

DUPLICATE 1

Analyte

Chloride

Sulfate

SAMPLE RESULTS - 04

Collected date/time: 07/15/22 00:00

Wet Chemistry by Method 9056A

Gravimetric Analysis by Method 2540 C-2011

Result

ug/l

3440

10600

Qualifier

RDL

ug/l

1000

5000

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	392000		10000	1	07/22/2022 11:28	WG1899236

Dilution

1

Analysis

date / time

07/22/2022 19:55

07/22/2022 19:55

Batch

WG1899306

WG1899306

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1515710-01,03,04

Method Blank (MB)

(MB) R3818995-1 07/22/22 11:28

(,	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Dissolved Solids	U		10000	10000	

Ss

L1515678-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1515678-02 07/22/22 11:28 • (DUP) R3818995-3 07/22/22 11:28

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	384000	392000	1	2.06		5

L1515678-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1515678-03 07/22/22 11:28 • (DUP) R3818995-4 07/22/22 11:28

,	Original Result		Dilution		DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	385000	396000	1	2.82		5

Laboratory Control Sample (LCS)

(LCS) R3818995-2 07/22/22 11:28

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	7200000	81.8	77.3-123	

QUALITY CONTROL SUMMARY

L1515710-01,02,03

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3818187-1 07/22	/22 03:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Sulfate	U		594	5000

(OS) L1515364-05 07/22/22 05:03 • (DUP) R3818187-3 07/22/22 05:18

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	2220	2230	1	0.530		15
Sulfate	ND	ND	1	2.54		15

(OS) L1515615-01 07/22/22 08:46 • (DUP) R3818187-5 07/22/22 09:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	21400	21400	1	0.116		15
Sulfate	27600	27600	1	0.00760		15

Laboratory Control Sample (LCS)

(I CS) P3818187-2 07/22/22 04:03

(LC3) K3010107-2 07/22/	22 04.03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40300	101	80.0-120	
Sulfate	40000	41000	103	80.0-120	

L1515364-10 Original Sample (OS) • Matrix Spike (MS)

(OS) L1515364-10 07/22/22 07:02 • (MS) R3818187-4 07/22/22 07:17

(03) 1010304 10 07/22/2	EZ 07.02 · (IVIS)	10010107 + 07	122122 01.11			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Chloride	50000	13900	71600	116	1	80.0-120
Sulfate	50000	ND	54300	101	1	80.0-120

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1515710-01,02,03

L1515710-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515710-03 07/22/22 11:30 • (MS) R3818187-6 07/22/22 11:45 • (MSD) R3818187-7 07/22/22 12:00

(,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3710	54100	54600	101	102	1	80.0-120			0.928	15
Sulfate	50000	11700	62600	63100	102	103	1	80.0-120			0.822	15

PAGE:

QUALITY CONTROL SUMMARY

L1515710-04

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3818538-1 07/22/22 09:48													
	MB Result	MB Qualifier	MB MDL	MB RDL									
Analyte	ug/l		ug/l	ug/l									
Chloride	U		379	1000									
Sulfate	U		594	5000									

(OS) L1515735-01 07/22/22 18:21 • (DUP) R3818538-3 07/22/22 18:35

(,	(/ -					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6500	6330	1	2.65		15
Sulfate	40700	40100	1	1.57		15

DUP RPD Limits

% 15 15

Cn

(OS) L1515735-03 07/22/22 20:36 • (DUP) R3818538-6 07/22/22 20:49

35800

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier
Analyte	ug/l	ug/l		%	
Chloride	2190	2090	1	4.78	

34500

Laboratory Control Sample (LCS)

(LCS) P3818538-2 07/22/22 10:01

Sulfate

(LC3) K3010330-2 07/22	1/22 10.01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40000	99.9	80.0-120	
Sulfate	40000	40300	101	80.0-120	

L1515735-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

3.77

/OSLI 1515735 01 07/22/22 19:21 . (MS) D3919539 4 07/22/22 19:49 . (MSD) D3919539 5 07/22/22 19:02

(03) [1313733-01 0772272	JS) LISTS JS-01 01/22/22 10.21 • (MS) KS010350-4 01/22/22 10.40 • (MSD) KS010350-3 01/22/22 15.02											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6500	57100	57300	101	102	1	80.0-120			0.268	15
Sulfate	50000	40700	90600	90900	99.8	100	1	80.0-120			0.311	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1515710-04

L1515735-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515735-03 07/22/22 20:36 • (MS) R3818538-7 07/22/22 21:02 • (MSD) R3818538-8 07/22/22 21:16

1 /	, ,			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	2190	52700	52800	101	101	1	80.0-120			0.266	15
Sulfate	50000	35800	85000	85200	98.4	98.8	1	80.0-120			0.259	15

PAGE: 13 of 16

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Dags Applytical National	1206E Lohanan Dd Maunt	Luliat TNL 27122
Pace Analytical National	12065 Lebanon Rd Mount .	Juliet. TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

		Billing Info	rmation:					А	nalvsis /	Contair	per / Pre	servative			Chain of Custod	y Page of
		Pres Chk											ACC ADVANCING SCIENCE			
		jfranks@so		;jay.martin@e	vergy.c										Submitting a sample vi	a this chain of custody
	City/State Collected:	ihle	1, WO			res									Pace Terms and Condi	
		Lab Project #				PE-NoF	15								SDG#	15 710
Site/Facility ID	#		P.O.#			mHD	NoPre	res								
Same Da Next Day Two Day	Five I y 5 Day 10 Da	Day (Rad Only)	Quote # Date Resu	lts Needed	No.	504	SmIHDPE-	HDPE NOP							Prelogin: P93 PM: 206 - Jeff	7488
Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	Chlorid	04 12	DS 11-							NAME OF TAXABLE PARTY.	Sample # (lab only)
[[]	GW	-	17/19/12	2 1345	2	0	X	X								-01
	GW		11110	1700	1	X										-03
	GW		1	1225	2	X		X								-173
	GW	1.5		-	1	X					45100			EE.		
1	GW	1	V	-/	2	X		X								-04
															4	
Remarks:									pH Temp			COC Si Bottle Correct	Sample Receipt Checklist COC Seal Present/Intact: NP N COC Signed/Accurate: NP N Bottles arrive intact: NP N Correct bottles used: N			
E1000010000000000000000000000000000000			Tracl	king# 63	CIO	42	94	7	500				VOA Ze	ero Head	If Applicab dspace:	YN
				ived by: (Signa	ture)				Trip Blar	nk Recei	(HCL / MeoH TBR	RAD Sc	creen <	0.5 mR/hr:	N
Da	te:	Time: Received by: (Signatur			ture)				Temp: 3.110)=3.	C Bott	les Received:	If prese	ervation r	required by Log	gin: Date/Time
Da	te:	Time	e: Rece	ived for Jab by	: (Signat	ture)			Date:	0/20			Hold:			Condition) NCF / OK
	Client Project 27213169.2 Site/Facility ID Rush? (L Same Da Next Da Three Da Comp/Grab Comp/Grab Remarks: Samples returned UPS FedEx Da	Client Project # 27213169.22-I Site/Facility ID # Rush? (Lab MUST Be Same Day Five Next Day 5 Day Two Day 10 Day Three Day Comp/Grab Matrix * GW	Account 8575 W. Overland Email To: ifranks@si City/State Collected: Sin Account # 27213169.22-I Site/Facility ID # Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day Comp/Grab Matrix * Depth GW GW GW GW GW GW GW GW GW G	Client Project # 27213169.22-I Site/Facility ID # Rush? (Lab MUST Be Notified) — Same Day — Five Day — Next Day — 5 Day (Rad Only) — Two Day — 10 Day (Rad Only) — Three Day Comp/Grab Matrix * Depth Date GW GW GW GW GW GW GW GW GW G	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: ifranks@scsengineers.com;jay.martin@er City/State Collected: Share Please C PT MT 6 Client Project # 27213169.22-1 Site/Facility ID # Rush? (Lab MUST Be Notified) — Same Day Five Day — Next Day 5 Day (Rad Only) — Two Day 10 Day (Rad Only) — Three Day Comp/Grab Matrix* Depth Date Time GW 11512 1345 GW 1225 GW	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email TO:	Accounts Payable 8875 W. 110th Street Overland Park, KS 66210 Email To:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: Ifranks@scsengineers.com;jay.martin@evergy.c City/State Collected:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: frank@scsengineers.com; ay.martin@evergyc. Collected:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: Ifrank-@scsengineers.com/jay.martin@evergy.c Cilient Project 8 AQUAOPKS-SIBLEY Site/Facility ID 8 P.O. 8 AQUAOPKS-SIBLEY Date Results Needed No. Opportune Only 10 Day (Rad Only) Two Day 10 Day (Rad Only) Two Day Comp/Grab Matrix* Depth Date Time Cntrs GW 1725 2 X X X GW 1725 2 X X X GW 7725 2 X	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Final To:	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: If mink-@scsengineers.com;jay.martin@evertysc Citect Project is 27213169.22-1 Site/Facility ID ii Piease Circle: Pr MT OET AQUAOPKS-SIBLEY AQUAOPKS-SIBLEY Site/Facility ID ii P.O. ii Piease Circle: Pr MT OET AQUAOPKS-SIBLEY AQUAOPKS-SIBLEY Site/Facility ID ii Poor ii Rush? (Lab MUST Be Notified) Date Results Needed No. Ormp/Grab Matrix* Depth Date Time Circles Circles Pr MT OET AQUAOPKS-SIBLEY AX X X X X X X X X X X X X X X X X X X	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Final To: Fin

Pace Analytical® ANALYTICAL REPORT

August 31, 2022

SCS Engineers - KS

Sample Delivery Group: L1528488

Samples Received: 08/24/2022

Project Number: 27213169.22 - I

Description: Evergy Sibley Gen Station GW 2022-23

Site: SIBLEY, MS

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law



Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1528488-01	5
DUPLICATE 1 L1528488-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 9056A	7
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-506 L1528488-01 GW			B. Coleman	08/18/22 12:10	08/24/22 08	3:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1916041	1	08/25/22 07:54	08/25/22 07:54	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
OUPLICATE 1 L1528488-02 GW			B. Coleman	08/18/22 00:00	08/24/22 08	3:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Net Chemistry by Method 9056A	WG1916041	1	08/25/22 08:48	08/25/22 08:48	LBR	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

Wubb law

MW-506

SAMPLE RESULTS - 01

Collected date/time: 08/18/22 12:10

L1528488

Wet Chemistry by Method 9056A

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ug/l		date / time	
Chloride	12500	1000	1	08/25/2022 07:54	WG1916041
Sulfate	95500	5000	1	08/25/2022 07:54	WG1916041

DUPLICATE 1

SAMPLE RESULTS - 02

Collected date/time: 08/18/22 00:00

L1528488

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Patch
	Result	Qualifier	KDL	Dilution	Allalysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	8540		1000	1	08/25/2022 08:48	WG1916041
Sulfate	95800		5000	1	08/25/2022 08:48	WG1916041

QUALITY CONTROL SUMMARY

L1528488-01,02

Wet Chemistry by Method 9056A Method Blank (MB)

(MB) R3830585-1	08/24/22 20:15
	MB Result

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Sulfate	U		594	5000

L1528389-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1528389-08 08/25/22 02:50 • (DUP) R3830585-3 08/25/22 03:43

(,	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	ND	ND	1	0.000		15
Sulfate	ND	ND	1	0.000		15

L1528389-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1528389-09 08/25/22 04:19 • (DUP) R3830585-5 08/25/22 04:37

(= 5) = -5 = 5 = 5	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	ND	ND	1	0.000		15	
Sulfate	ND	ND	1	0.000		15	

Laboratory Control Sample (LCS)

(LCS) P3830585-2 08/24/22 20:32

(ECS) K3830383-2 08/2-		1.00 B			1000 110
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40100	100	80.0-120	
Sulfate	40000	39700	99.3	80.0-120	

L1528389-08 Original Sample (OS) • Matrix Spike (MS)

(OS) L1528389-08 08/25	5) L1528389-08 08/25/22 02:50 • (MS) R3830585-4 08/25/22 04:01										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	ug/l	ug/l	ug/l	%		%					
Chloride	50000	ND	51500	103	1	80.0-120					
Sulfate	50000	ND	51800	104	1	80.0-120					

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1528488-01,02

L1528488-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1528488-01 08/25/22 07:54 • (MS) R3830585-6 08/25/22 08:12 • (MSD) R3830585-7 08/25/22 08:30

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	12500	64100	62700	103	100	1	80.0-120			2.23	15
Sulfate	50000	95500	143000	143000	95.4	94.1	1	80.0-120			0.427	15

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Insurance and				200	-					OF THE STREET		1,
			Billing Info	rmation:				2000		Analysis	Contains	or / Preservative	Towns I	Chain of Custon	dy Page t of
SCS Engineers - KS			Account	s Payab	le		Pres	200		100 F 455					
			8575 W.	110th 5	street		Chk	1000						10	2
8575 W. 110th Street			Overland			10				10000	1			- 1	ace
Overland Park, KS 66210														PEOP	LE ADVANCING SCIENCE
Report to:			Email To:											MTJ	ULIET, TN
Jason Franks			jfranks@s	csenginee	rs.com;j	ay.martin@ev	ergy.c							Submitting a sample	fount Juliet, TN 37122 via this chain of custody
Project Description: Evergy Sibley Gen Station GW 2022-23		City/State Collected:	ihrac	min	0	Please Cir	rcle:	6.5						Pace Terms and Cond	digment and acceptance of the litions found at:com/hubfs/pas-standard-
	Client Project	STORY CONTRACTOR OF THE PARTY O	III	Lab Pro	ject#	1	/	oPr						terms.pdf	MAN
Phone: 913-681-0030	27213169.	22 - 1		AQUA	OPKS-	SIBLEY		N-3c						SDG# /S	K150
Collected by (print):	Site/Facility II			P.O. #				SmiHDPE-NoPre						Acctnum: AQ	
Collected by (signature):	Rush? (L	Lab MUST Be		Quote	#			125						Template:T2:	
1111 47		ay Five D y S Day		Dat	to Rocult	s Needed		504						Prelogin: P94	
Immediately	Two Day	y 10 Da		5	te nesuli	3 Needed	No.	The second second						PM: 206 - Jeff	Carr
Packed on Ice NY_	Three D	ay		1 3	VVV	am.	of.	ride						PB:	
Sample ID	Comp/Grab	Matrix *	Depth	P	ME	NAME.	Cntrs	Chloride,						Shipped Via:	Sample # (lab only)
MW-506	(6)	GW	-	1121	7	18118177	L	X							
MW-506 MS/MSD	16	GW	-	-	<u> </u>	1		X							3-01
DUPLICATE 1	6	GW		-			,	X							100
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\														1-02
FAME .											00000				
							B 53	1000			000000 E		7 (2000)		
											ESSESSION I		1000000 L		
							100 E	100 H		B000	E000000 E		- CONTROL - CONT		
			100 to 100 ft					EE 100		5000 BB00	1000000 E		(S)(S)		
							20 20 20 20	100000 100000			200000 E		6 (S)		
* Matrix:	emarks:							1000							
SS - Soil AIR - Air F - Filter	Ciriai Ka.									pH		Temp	COC Seal	Ample Receipt Ch Present/Intact	Seck Tal
GW - Groundwater B - Bioassay WW - WasteWater										Flow		Other		ed/Accurate: arrive intact:	¥-1
DW - Drinking Water	amelia estumad				B1000000									bottles used: at volume sent:	S
OT - Other	ups(edE)	Courier			Trackir	s# 587	19	6	76-	2 04	12			If Applicab	le T
Relinguished by : (Signature)	Da	te:	Time;	1.0	Receiv	ed by: (Signatu	ire)			Trip Blan	k Receive	d: Yes/No	Preserva	tion Correct/Chen <0.5 mR/hr:	ecked: N
MVX	18	110173	7 11	300						0		HCL / MeoH TBR			
Relinquished by : (Signature)	Dai	te:	Time:		Receive	ed by: (Signatu	ire)				844°C	Bottles Received:	If preserve	ation required by Log	gin: Date/Time
Relinquished by : (Signature)	Dat	te:	Time:		Receive	ed for lab by: (Signatu	ure)	C.F	Date:	2.0.0	Time:	Hold:		Condition:
					m	ac &	w	The	9	16-21	3-22	09:00			NCF (OK)
					0					08174	172	08:00			

Franks, Jason

Sent: From:

Attachments: Subject:

> Monday, August 22, 2022 9:02 AM Jeffrey Carr < Jeffrey.Carr@pacelabs.com>

88488817

Franks, Jason

NCF.pdf FW: 08/20/22 - NCF AQUAOPKS

This email originated from outside of SCS Engineers. Do not click links or open attachments unless you recognize the sender and

Jason, login has informed me that we did not receive the samples listed on this COC

know the content is safe.

From: Deanna Ramsey < Deanna. Ramsey @pacelabs.com>

Sent: Saturday, August 20, 2022 8:23 PM

To: f33eto2je@addtask.kanbanflow.com; Jeffrey Carr < Jeffrey.Carr@pacelabs.com>

Subject: 08/20/22 - NCF AQUAOPKS

prohibited. If you are not the intended recipient, please contact the sender immediately and delete any copies. protected information and are for the sole use of the addressee(s). Any review or distribution by others is strictly NOTICE -- The contents of this email and any attachments may contain confidential, privileged, and/or legally

Please consider the environment before printing this email

Pace Analytical® ANALYTICAL REPORT

November 26, 2022

SCS Engineers - KS

Sample Delivery Group: L1557442

Samples Received: 11/12/2022

Project Number: 27213169.22-A

Description: Evergy - Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager

Tubb lan

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-504 L1557442-01	6
MW-505 L1557442-02	7
MW-506 L1557442-03	8
MW-510 L1557442-04	9
MW-512 L1557442-05	10
MW-601 L1557442-06	11
DUPLICATE L1557442-07	12
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 9056A	15
Metals (ICP) by Method 6010D	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-504 L1557442-01 GW			Whit Martin	11/10/22 12:25	11/12/22 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	500.	211411011	date/time	date/time	, many st	200000
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1960688	1	11/17/22 14:49	11/17/22 14:49	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 16:55	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-505 L1557442-02 GW			Whit Martin	11/10/22 15:15	11/12/22 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1961103	1	11/17/22 06:44	11/17/22 14:44	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1960688	1	11/17/22 15:02	11/17/22 15:02	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 16:57	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-506 L1557442-03 GW			Whit Martin	11/10/22 12:15	11/12/22 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1960688	1	11/17/22 15:15	11/17/22 15:15	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 17:05	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-510 L1557442-04 GW			Whit Martin	11/10/22 10:40	11/12/22 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	INCAD CAMAD		date/time	date/time		MALL IN TAIL
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1960688	1	11/17/22 15:32	11/17/22 15:32	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 17:08	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1557442-05 GW			Whit Martin	11/10/22 14:15	11/12/22 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Cronimatria Anglucia hu Mathad 2540 C 2044	WC40C4440	4	date/time	date/time		MA Julius TAI
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1960688	1	11/17/22 16:10	11/17/22 16:10	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 17:11	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-601 L1557442-06 GW			Whit Martin	11/10/22 13:00	11/12/22 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
		1	11/17/22 07:07			
Wet Chemistry by Method 9056A	WG1960688	I	11/1//22 10:23	11/17/22 16:23	GEB	Mt. Juliet, TN

Metals (ICP) by Method 6010D

WG1963561

1 11/23/22 13:38 11/23/22 16:39

KMG

Mt. Juliet, TN

SAMPLE SUMMARY

DUPLICATE L1557442-07 GW			Whit Martin	11/10/22 13:00	11/12/22 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1961110	1	11/17/22 07:07	11/17/22 14:48	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1960688	1	11/17/22 17:14	11/17/22 17:14	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1963561	1	11/23/22 13:38	11/23/22 17:13	KMG	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

Wubb law

SAMPLE RESULTS - 01

Collected date/time: 11/10/22 12:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	168000		10000	1	11/17/2022 14:48	WG1961110

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ND		1000	1	11/17/2022 14:49	WG1960688
Fluoride	ND		150	1	11/17/2022 14:49	WG1960688
Sulfate	27400		5000	1	11/17/2022 14:49	WG1960688

Cn

Sr

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 16:55	WG1963561
Calcium	34600		1000	1	11/23/2022 16:55	WG1963561

MW-505

SAMPLE RESULTS - 02

L155

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 11/10/22 15:15

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	183000		10000	1	11/17/2022 14:44	WG1961103

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1170		1000	1	11/17/2022 15:02	WG1960688
Fluoride	ND		150	1	11/17/2022 15:02	WG1960688
Sulfate	23800		5000	1	11/17/2022 15:02	WG1960688

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 16:57	WG1963561
Calcium	32900		1000	1	11/23/2022 16:57	WG1963561

MW-506

SAMPLE RESULTS - 03

Collected date/time: 11/10/22 12:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	446000		10000	1	11/17/2022 14:48	<u>WG1961110</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9810		1000	1	11/17/2022 15:15	WG1960688
Fluoride	229		150	1	11/17/2022 15:15	WG1960688
Sulfate	96800		5000	1	11/17/2022 15:15	WG1960688

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 17:05	<u>WG1963561</u>
Calcium	96200		1000	1	11/23/2022 17:05	WG1963561

SAMPLE RESULTS - 04

Collected date/time: 11/10/22 10:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	468000		10000	1	11/17/2022 14:48	WG1961110

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3990		1000	1	11/17/2022 15:32	WG1960688
Fluoride	229		150	1	11/17/2022 15:32	WG1960688
Sulfate	19700		5000	1	11/17/2022 15:32	WG1960688

Ss

Cn

Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 17:08	WG1963561
Calcium	120000		1000	1	11/23/2022 17:08	WG1963561

SAMPLE RESULTS - 05

Collected date/time: 11/10/22 14:15

L1557442

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	510000		10000	1	11/17/2022 14:48	WG1961110

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9690		1000	1	11/17/2022 16:10	WG1960688
Fluoride	195		150	1	11/17/2022 16:10	WG1960688
Sulfate	115000		5000	1	11/17/2022 16:10	WG1960688

	Result	Qualifier F	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ι	ıg/l		date / time	
Boron	ND	2	200	1	11/23/2022 17:11	WG1963561
Calcium	118000	1	000	1	11/23/2022 17:11	WG1963561

MW-601

SAMPLE RESULTS - 06

Collected date/time: 11/10/22 13:00

L1557442

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	383000		10000	1	11/17/2022 14:48	WG1961110

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	4030		1000	1	11/17/2022 16:23	WG1960688
Fluoride	189		150	1	11/17/2022 16:23	WG1960688
Sulfate	14200		5000	1	11/17/2022 16:23	WG1960688

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 16:39	WG1963561
Calcium	97400		1000	1	11/23/2022 16:39	WG1963561

DUPLICATE

SAMPLE RESULTS - 07

Collected date/time: 11/10/22 13:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	381000		10000	1	11/17/2022 14:48	WG1961110

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	3970		1000	1	11/17/2022 17:14	WG1960688
Fluoride	184		150	1	11/17/2022 17:14	WG1960688
Sulfate	13800		5000	1	11/17/2022 17:14	WG1960688

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/23/2022 17:13	WG1963561
Calcium	99300		1000	1	11/23/2022 17:13	WG1963561

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1557442-02

Method Blank (MB)

(MB) R3864553-1 11/17/22 14:44

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

(OS) L1557241-08 11/17/22 14:44 • (DUP) R3864553-3 11/17/22 14:44

	Original Result	DUP Result Dilution		DUP RPD <u>DUP Qualifier</u>		DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2990000	3250000	1	8.35	J3	5

Ss

L1557241-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1557241-09 11/17/22 14:44 • (DUP) R3864553-4 11/17/22 14:44

(00,100,100,100,100,100,100,100,100,100,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	3400000	3430000	1	0.880		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3864553-2 11/17/22 14:44

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8600000	97 7	77 3-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1557442-01,03,04,05,06,07

Method Blank (MB)

	MDD
(MB) R3863768-1	11/1//22 14:48

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1556279-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1556279-01 11/17/22 14:48 • (DUP) R3863768-3 11/17/22 14:48

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	588000	607000	1	3.18		5

⁶Qc

L1557291-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1557291-01 11/17/22 14:48 • (DUP) R3863768-4 11/17/22 14:48

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1620000	1720000	1	5.69	<u>J3</u>	5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3863768-2 11/17/22 14:48

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte ug/l		ug/l	%	%	
Dissolved Solids	8800000	8150000	92.6	77 3-123	

WG1960688

QUALITY CONTROL SUMMARY

L1557442-01,02,03,04,05,06,07

Wet Chemistry by Method 9056A Method Blank (MB)

(MB) R3863139-1 11/17/22 10:31

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

L1557373-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1557373-06 11/17/22 14:10 • (DUP) R3863139-3 11/17/22 14:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	2010	1350	1	39.4	<u>P1</u>	15
Fluoride	470	492	1	4.55		15
Sulfate	26600	26400	1	0.587		15

L1557442-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1557442-06 11/17/22 16:23 • (DUP) R3863139-5 11/17/22 16:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4030	3940	1	2.03		15
Fluoride	189	187	1	1.01		15
Sulfate	14200	14100	1	1.14		15

Laboratory Control Sample (LCS)

(LCS) R3863139-2 11/17/22 10:44

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	41900	105	80.0-120	
Fluoride	8000	8450	106	80.0-120	
Sulfate	40000	42500	106	80.0-120	

WG1960688

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1557442-01,02,03,04,05,06,07

L1557373-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1557373-06 11/17/22 14:10 • (MS) R3863139-4 11/17/22 14:36

(00) 21007070 00 11/11/22 14.10 · [moj 10000100 4 11/11/22 14.00									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier		
Analyte	ug/l	ug/l	ug/l	%		%			
Chloride	50000	2010	52800	102	1	80.0-120			
Fluoride	5000	470	5820	107	1	80.0-120			
Sulfate	50000	26600	75700	98.3	1	80.0-120			

L1557442-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1557442-06 11/17/22 16:23 • (MS) R3863139-6 11/17/22 16:49 • (MSD) R3863139-7 11/17/22 17:01

(00) 2:007 1:12 00 1:1:1722	(00) 21007 112 00 14 1/122 10:20 (110) 10000100 0 14 1/122 10:10 (1100) 10000100 7 14 1/122 10:10											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	4030	56300	54900	105	102	1	80.0-120			2.47	15
Fluoride	5000	189	5520	5390	107	104	1	80.0-120			2.49	15
Sulfate	50000	14200	65200	63700	102	98.9	1	80.0-120			2.33	15

WG1963561

Calcium

QUALITY CONTROL SUMMARY

L1557442-01,02,03,04,05,06,07

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3864743-1 11/23	3/22 16:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

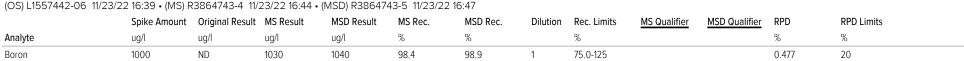
10000

(LCS) R3864743-2 11/23/2	22 16:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	963	96.3	80.0-120	
Calcium	10000	10200	102	80.0-120	

[†]Cn

GI

L1557442-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


107000

107000

95.7

(OS) L1557442-06 11/23/22 16:39 • (MS) R3864743-4 11/23/22 16:44 • (MSD) R3864743-5 11/23/22 16:47

97400

75.0-125

0.220

20

98.0

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

Pace Analytical	National	12065 Lebanon	Rd Mount	Juliet. TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:		76	Billing Info	ormation:			1				nalysis /	Contai	ner / Preser	vative			Chain of Custody	Page of
SCS Engineers - KS			Account	ts Payabl	le	40	Pres		l ~				-					
3575 W. 110th Street Overland Park, KS 66210	***		8575 W	. 110th S d Park, H	treet	l0	Chk		V								Pa	CCC
Report to:			Email To:	csandinoo	re comile	ay.martin@e		res									MT JU	LIET, TN
Project Description:		City/State) f	LIA		Please C		loPr									Submitting a sample via constitutes acknowledge	this chain of custody nent and acceptance of the
Evergy - Sibley Generating Station	Tou -	Collected:	Sibley	-		PT MT (90000	JE-N	m								Pace Terms and Condition https://info.pacelabs.com/terms.pdf	m/hubfs/pas-standard-
Phone: 913-681-0030	2721316	The second secon	/	AQUA	ect # OPKS-S	SIBLEY		SmIHDPE-NoP	250m1HDPE-HNO3								SDG# LTS	5574WL E167
collected by (print): Whit Martin	Site/Facility	ID#		P.O. #				12	HDPE	oPres							TE	
ollected by (signature):	Rush?	(Lab MUST Be	Notified)	Quote	#			504)	0ml	E-N							Acctnum: AQU Template: T136	
mmediately Packed on Ice N Y X	Same Next Two I	Day 10 Day	Day y (Rad Only) ay (Rad Only)	Dat	e Results	s Needed	No.	(Cld, F,	6010	SomIHDPE-NoPres							Prelogin: P958 PM: 206 - Jeff C PB:	
Sample ID	Comp/Grai	Matrix *	Depth	Da	ite	Time.	Cntrs	Anions	Ca -	5 2							Shipped Via: Fe	
nw-504		1 2 22		1. 6	,			An	8	TD							Remarks	Sample # (lab only)
nw-505	Grab	GW		11/10	1/22	1229	3	X	Х	X								- 01
NW-506	Grab	GW	2	11/10	122	1515	3	X.	Х	Χ,								-07
nw-510*	Grab	GW		11/10	122	1215	3	X	X	X								*0
nw-512	Grab	GW	-	11/10	122	1040	3	X	X	X								- 04
IW-601	Grab	GW		11/10/	122	1415	3	X	۰X	X								05
	Grab	GW	400,000	11/10	122	1300	3	X	Х	X							1 10 5 6	66
GO MS/MSD	Brak	gw GW		11/10/	22	1300	3	X	Х	X								
	Grah	GW		11/10/	122	1300	3	·X	Х	X							1	-07
									7									
																	1	
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay	Remarks:										pH _		Temp			eal Pro	Le Receipt Che esent/Intact: Accurate:	
vw - WasteWater w - Drinking Water											Flow		Other		Corre	ct bot	ive intact: tles used:	Y N
T - Other	Samples returned UPS FedEx		Mile established		Tracking	g# 60	94	5	45	5	9-	8	7				volume sent: If Applicable adspace:	TYN
Relinquished by : (Signature)	D	ate:	Time:		Receive	d by: (Signatu	ire)	-		T	rip Blank	Receiv		Меон	Prese	rvatio	n Correct/Chec <0.5 mR/hr:	cked: $\sqrt{Y} - N$
Relinquished by : (Signature)	D	ate:	Time:	-	Receive	d by: (Signatu	ire)			C.	P.A.	e °(Bottles R	eceived:	If prese	ervation	required by Logi	n: Date/Time
Relinquished by : (Signature)	D	ate:	Time:		Receive	d for lab by:	Signatur	re)		00	ate:	-7	Time:	900	Hold:			Condition: NCF / (OK)

APPENDIX E

STATISTICAL ANALYSES

- E.1 Spring 2021 Semiannual Detection Monitoring Statistical Analyses, Revision 1
- E.2 Fall 2021 Semiannual Detection Monitoring Statistical Analyses
- E.3 Spring 2022 Semiannual Detection Monitoring Statistical Analyses

Appendix E.1	
Spring 2021 Semiannual Detection Monitoring Statistical Analyses, Revision 1	

MEMORANDUM

October 5, 2021 January 3, 2022 Revision 1

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 Evergy Missouri West, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2021 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 24, 2021. Review and validation of the results from the May 2021 Detection Monitoring Event was completed on July 9, 2021, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 19, 2021 and September 2, 2021.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits established for upgradient monitoring well MW-505, two Appendix III constituents above their respective prediction limits established for monitoring well MW-506 and four Appendix III constituents above their respective prediction limits established for monitoring well MW-512.

Monitoring Well/Constituent	*UPL	Observation May 24, 2021	1st Verification July 19, 2021	2nd Verification September 2, 2021
MW-505				
Calcium	29.31	34.4	34.8	34.1
Total Dissolved Solids	180.3	181	184	188
MW-506				
Chloride	7.578	8.09	8.01	8.03
Sulfate	76.83	89.1	89.1	88.7
MW-512				
Calcium	111.3	114	120	114
Chloride	5.094	10.6	10.2	10.2
Total Dissolved Solids	466.4	505	524	555
Sulfate	44.8	110	104	107

^{*}UPL - Upper Prediction Limit

Sibley Generating Station
Determination of Statistically Significant Increases
CCR Landfill
October 5, 2021
January 3, 2022 Revision 1
Page 2 of 2

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified eight SSIs above the background prediction limits. These include calcium and total dissolved solids (TDS) at upgradient monitoring well MW-505, chloride and sulfate at monitoring well MW-506, and calcium, chloride, TDS, and sulfate at monitoring well MW-512.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

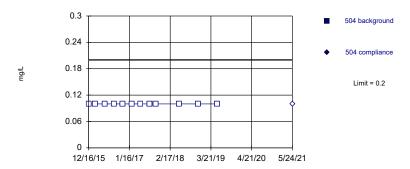
Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions
1	January 3, 2022	No	Date of completion for the review and validation of the results from the May 2021 Detection Monitoring Event was corrected to July 9, 2021 from the incorrect date of July 27, 2021.

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021 January 3, 2021 Revision 1


ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

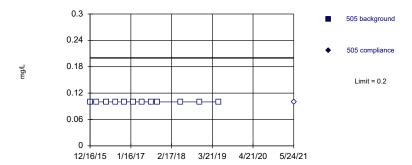
> Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III Siblev Client: SCS Engineers Data: Sibley

> > **Prediction Limit**

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Intrawell Non-parametric 0.3 0.24 0.18

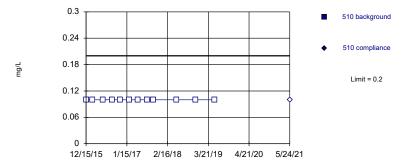

506 background 506 compliance Limit = 0.2 0.06 12/15/15 1/15/17 2/16/18 3/21/19 4/21/20 5/24/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

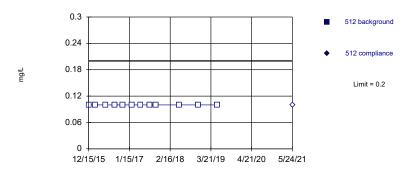
> Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/20/2021 12:29 PM View: LF III


Sibley Client: SCS Engineers Data: Sibley

					ı		l	
	504	504	505	505	506	506	510	510
12/15/2015					<0.2		<0.2	
12/16/2015	<0.2		<0.2					
2/18/2016	<0.2		<0.2		<0.2		<0.2	
5/25/2016	<0.2		<0.2		<0.2		<0.2	
8/23/2016	<0.2		<0.2		<0.2		<0.2	
11/10/2016							<0.2	
11/11/2016	<0.2		<0.2		<0.2			
2/8/2017	<0.2		<0.2		<0.2		<0.2	
5/3/2017							<0.2	
5/4/2017	<0.2		<0.2		<0.2			
8/1/2017	<0.2		<0.2				<0.2	
8/4/2017					<0.2			
10/3/2017	<0.2		<0.2		<0.2		<0.2	
5/17/2018	<0.2		<0.2		<0.2		<0.2	
11/15/2018	<0.2		<0.2		<0.2		<0.2	
5/22/2019	<0.2		<0.2		<0.2		<0.2	
5/24/2021		<0.2		<0.2		<0.2		<0.2

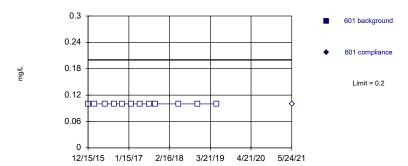
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

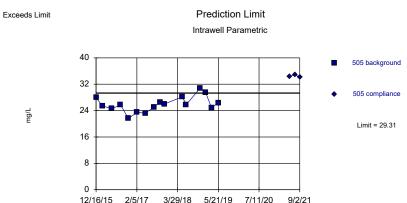
Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 504 background 504 compliance Limit = 40.91

Background Data Summary: Mean=34.4, Std. Dev.=4.551, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

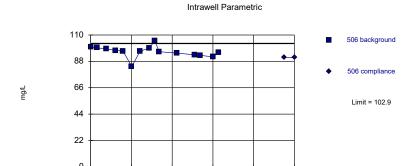
Sanitas[™] v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

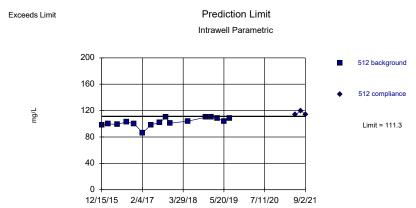

Background Data Summary: Mean=25.96, Std. Dev.=2.346, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9775, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron, Calcium Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

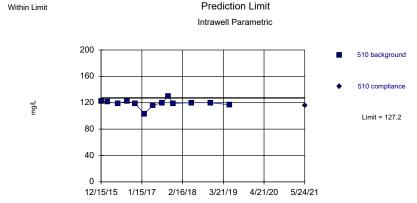
				•	•	•		
T	512	512	601	601	504	504	505	505
12/15/2015	<0.2		<0.2					
12/16/2015					31.5		28	
2/18/2016	<0.2		<0.2		34.3		25.4	
5/25/2016	<0.2				30.2		24.6	
5/26/2016			<0.2					
8/23/2016	<0.2		<0.2		32.2		25.7	
11/11/2016	<0.2		<0.2		36.9		21.6	
2/8/2017	<0.2		<0.2		29.6		23.5	
5/3/2017	<0.2		<0.2					
5/4/2017					27.7		23.2	
8/1/2017	<0.2		<0.2		30.5		25.1	
10/3/2017	<0.2		<0.2		33.2		26.6	
11/16/2017					37.6		26	
5/17/2018	<0.2		<0.2		33.3		28.2	
6/27/2018							25.8	
11/15/2018	<0.2		<0.2		45		30.8	
1/11/2019					39.3		29.5	
3/12/2019					35.4		24.9	
5/22/2019	<0.2		<0.2		33.1		26.4	
7/16/2019					40.6			
5/24/2021		<0.2		<0.2		34.1		34.4
7/19/2021								34.8
9/2/2021								34.1

Within Limit Prediction Limit



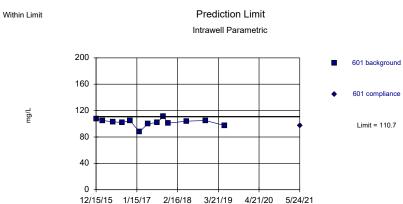
Background Data Summary: Mean=95.97, Std. Dev.=4,734, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

12/15/15 2/4/17 3/29/18 5/20/19 7/11/20


Constituent: Calcium Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

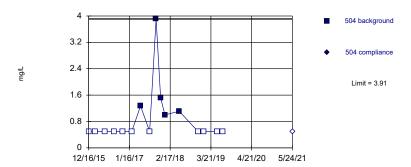
Background Data Summany: Mean=102.6, Std. Dev.=6.094, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary (based on cube transformation): Mean=1699613, Std. Dev.=238011, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilki @alpha = 0.01, calculated = 0.8274, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

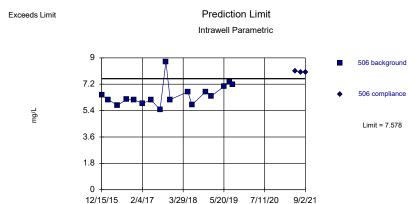
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=102.3, Std. Dev.=5.577, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8789, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Calcium Analysis Run 9/20/2021 12:29 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

				Sibley Client: S	SCS Engineers Da	ata: Sibley		
	506	506	510	510	512	512	601	601
12/15/2015	100		122		98.1		107	
2/18/2016	99.3		121		100		105	
5/25/2016	98.3		119		98.9			
5/26/2016							103	
8/23/2016	97.2		122		103		102	
11/10/2016			119					
11/11/2016	96.5				100		105	
2/8/2017	83.6		103		86.4		87.5	
5/3/2017			116		98.4		100	
5/4/2017	96.4							
8/1/2017			120		102		102	
8/4/2017	99							
10/3/2017	105		130		110		111	
11/16/2017	96		119		101		101	
5/17/2018	94.9		120		104		104	
11/15/2018	93.4		120		110		105	
1/11/2019	93				110			
3/12/2019					108			
5/22/2019	91.7		117		104		97.4	
7/16/2019	95.3				108			
5/24/2021		91.4		116		114		97.4
7/19/2021						120		
9/2/2021		91.1				114		

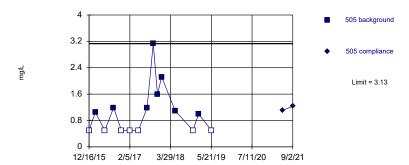
Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

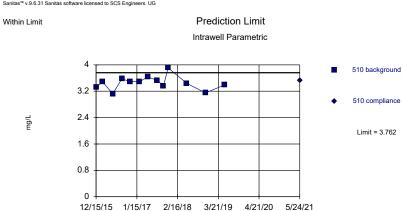


Background Data Summary: Mean=6.479, Std. Dev.=0.7774, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8712, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Non-parametric



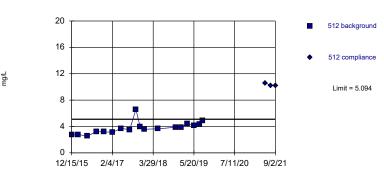
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

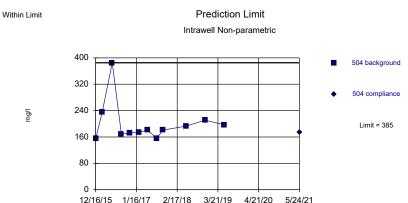
Background Data Summary: Mean=3.454, Std. Dev.=0.2034, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 9/20/2021 12:29 PM View: LF III

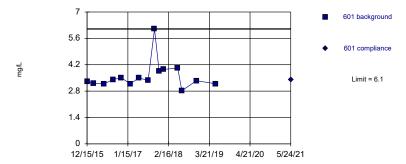
Sibley	Client: SCS Engineers	Data: Sibley

l	504	504	505	505	506	506	510	510
12/15/2015					6.45		3.33	
12/16/2015	<1		<1					
2/18/2016	<1		1.05		6.15		3.48	
5/25/2016	<1		<1		5.76		3.12	
8/23/2016	<1		1.19		6.16		3.58	
11/10/2016							3.49	
11/11/2016	<1		<1		6.13			
2/8/2017	<1		<1		5.89		3.49	
5/3/2017							3.63	
5/4/2017	1.27		<1		6.15			
8/1/2017	<1		1.18				3.53	
8/4/2017					5.45			
10/3/2017	3.91		3.13		8.74		3.36	
11/16/2017	1.52		1.59		6.15		3.91	
12/28/2017	1		2.12					
5/17/2018	1.11		1.09		6.69		3.44	
6/27/2018					5.8			
11/15/2018	<1		<1		6.69		3.15	
1/11/2019	<1		1		6.39			
5/22/2019	<1		<1		7.05		3.39	
7/16/2019	<1				7.33			
8/21/2019					7.17			
5/24/2021		<1		1.11		8.09		3.53
7/19/2021						8.01		
9/2/2021				1.23		8.03		

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

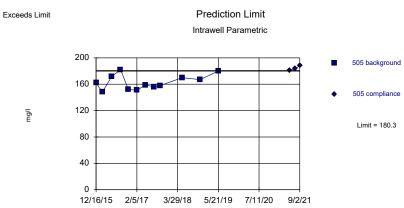

Exceeds Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=3.786, Std. Dev.=0.9366, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Within Limit Prediction Limit
Intrawell Non-parametric

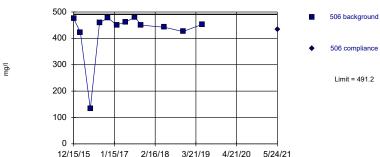
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=163.1, Std. Dev.=11.19, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.014, calculated = 0.9461, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

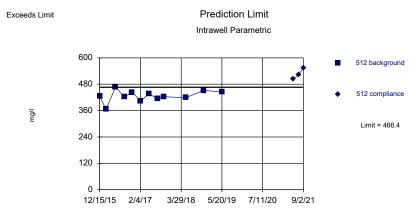
Constituent: Chloride, Dissolved Solids Analysis Run 9/20/2021 12:29 PM View: LF III

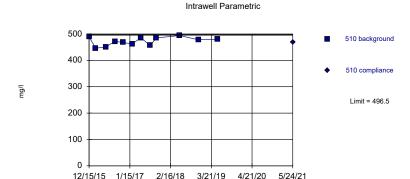

Sibley Client: SCS Engineers Data: Sibley

12/15/2015									
12/16/2015 155 162 2/18/2016 2.78 3.22 236 148 5/25/2016 2.55 3.18 8/23/2016 3.23 3.41 168 182 8/23/2016 3.23 3.41 168 182 11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.7 3.5 181 159 8/1/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 193 170 12/28/2017 3.58 3.95 170 170 5/17/2018 3.64 4.02 193 170 170 6/27/2018 2.82 111 167 171 1/1/12/2019 3.85 3.35 211 167 181 3/12/2019 4.38 174 180 180 8/2/2019 4.17 3.19 197 180 180 7/19/2021 10.6 3.4 174 181 8/2/2021 10.6 3.4 174 181	ı	512	512	601	601	504	504	505	505
2/18/2016 2.78 3.22 236 148 5/25/2016 2.55 3.18 172 5/26/2016 3.23 3.41 168 182 11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.7 3.5 156 156 8/1/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 156 156 5/1/7/2018 3.64 4.02 193 170 6/2/2018 2.82 11/15/2018 3.89 2.82 11/15/2019 3.85 3/12/2019 4.38 5/2/2/2019 4.17 3.19 197 180 7/16/2019 4.91 5/2/2/2011 10.6 3.4 174 181 7/19/2021 10.6 3.4 174 181 7/19/2021 10.2 10.2 184	12/15/2015	2.72		3.3					
5/25/2016 2.55 3.18 8/23/2016 3.23 3.41 168 182 11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.7 3.5 151 8/1/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 156 156 11/16/2017 3.97 3.87 172 172 5/1/2018 3.64 4.02 193 170 6/27/2018 3.64 4.02 193 170 6/27/2018 3.89 3.35 211 167 11/15/2018 3.89 3.35 19 197 180 5/2/2019 4.17 3.19 197 180 174 181 5/2/2019 4.91 10.6 3.4 174 181 5/2/2021 10	12/16/2015					155		162	
5/26/2016 3.23 3.41 168 182 11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.14 3.19 174 151 5/3/2017 3.5 3.5 181 159 8/1/2017 3.53 3.37 156 156 156 10/3/2017 6.59 6.1 181 158 178 178 178 11/16/2017 3.97 3.87 193 170 170 177/2018 170 177/2018 170 177/2018 180 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171/2019 170 171	2/18/2016	2.78		3.22		236		148	
8/23/2016 3.23 3.41 168 182 11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.7 3.5 159 8/1/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 181 158 5/1/2018 3.64 4.02 193 170 6/2/72018 2.82 11/15/2018 3.89 3.35 211 167 1/1/12019 3.85 3.319 197 180 170 7/16/2019 4.35 174 181 181 5/2/2019 4.91 4.91 174 181 5/2/2021 10.6 3.4 174 181 7/19/2021 10.2 3.4 174 181	5/25/2016	2.55				385		172	
11/11/2016 3.17 3.51 173 152 2/8/2017 3.14 3.19 174 151 5/3/2017 3.7 3.5 5/4/2017 3.7 3.5 5/4/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.58 3.95 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 2.1 3.35 211 167 11/11/2019 3.85 3/11/2019 4.35 3/12/2019 4.35 8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.6 3.4 174 181 7/19/2021 10.2	5/26/2016			3.18					
2/8/2017 3.14 3.19 174 151	8/23/2016	3.23		3.41		168		182	
5/3/2017 3.7 3.5 5/4/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 158 158 12/28/2017 3.58 3.95 170 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 111 167 1/11/2019 3.85 3.35 211 167 1/11/2019 3.85 3.19 197 180 5/22/2019 4.17 3.19 197 180 8/21/2019 4.91 10.6 3.4 174 181 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 10.2 184	11/11/2016	3.17		3.51		173		152	
5/4/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 3.87 3.87 12/28/2017 3.58 3.95 170 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3.19 197 180 4.8 5/22/2019 4.17 3.19 197 180 4.8 8/21/2019 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.92 4.94 <td>2/8/2017</td> <td>3.14</td> <td></td> <td>3.19</td> <td></td> <td>174</td> <td></td> <td>151</td> <td></td>	2/8/2017	3.14		3.19		174		151	
8/1/2017 3.53 3.37 156 156 10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 3.87 12/28/2017 3.58 3.95 170 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3.19 197 180 4.02 5/22/2019 4.17 3.19 197 180 4.02 7/16/2019 4.35 4.91<	5/3/2017	3.7		3.5					
10/3/2017 6.59 6.1 181 158 11/16/2017 3.97 3.87 3.87 12/28/2017 3.58 3.95 170 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3.19 197 180 4.02 181 5/22/2019 4.17 3.19 197 180 4.02 181 8/21/2019 4.91 <td>5/4/2017</td> <td></td> <td></td> <td></td> <td></td> <td>181</td> <td></td> <td>159</td> <td></td>	5/4/2017					181		159	
11/16/2017 3.97 3.87 12/28/2017 3.58 3.95 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3.12/2019 4.38 4.38 4.17 3.19 197 180 5/22/2019 4.35 4.91 4.9	8/1/2017	3.53		3.37		156		156	
12/28/2017 3.58 3.95 5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3/12/2019 4.38 4.38 4.17 3.19 197 180 7/16/2019 4.35 4.91 4.91 4.91 174 181 7/19/2021 10.2 10.2 184	10/3/2017	6.59		6.1		181		158	
5/17/2018 3.64 4.02 193 170 6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3/12/2019 4.38 4.38 4.17 3.19 197 180 7/16/2019 4.35 4.91 4.91 4.91 4.91 174 181 5/24/2021 10.2 3.4 174 184	11/16/2017	3.97		3.87					
6/27/2018 2.82 11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3/12/2019 4.38 4.38 4.17 3.19 197 180 7/16/2019 4.35 4.91 4.91 4.91 174 181 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 10.2 184	12/28/2017	3.58		3.95					
11/15/2018 3.89 3.35 211 167 1/11/2019 3.85 3.712/2019 4.38 4.17 3.19 197 180 5/22/2019 4.35 4.91 4.91 4.91 174 181 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 10.2 184	5/17/2018	3.64		4.02		193		170	
1/11/2019 3.85 3/12/2019 4.38 5/22/2019 4.17 3.19 197 180 7/16/2019 4.35 8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 184	6/27/2018			2.82					
3/12/2019 4.38 5/22/2019 4.17 3.19 197 180 7/16/2019 4.35 8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2	11/15/2018	3.89		3.35		211		167	
5/22/2019 4.17 3.19 197 180 7/16/2019 4.35 8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 184	1/11/2019	3.85							
7/16/2019 4.35 8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 184	3/12/2019	4.38							
8/21/2019 4.91 5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 184	5/22/2019	4.17		3.19		197		180	
5/24/2021 10.6 3.4 174 181 7/19/2021 10.2 184	7/16/2019	4.35							
7/19/2021 10.2 184	8/21/2019	4.91							
	5/24/2021		10.6		3.4		174		181
9/2/2021 10.2 188	7/19/2021		10.2						184
	9/2/2021		10.2						188

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

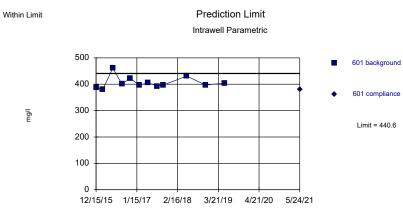



Background Data Summary (based on x^5 transformation): Mean=1.8e13, Std. Dev.=6.8e12, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8456, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=426.3, Std. Dev.=25.95, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9454, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

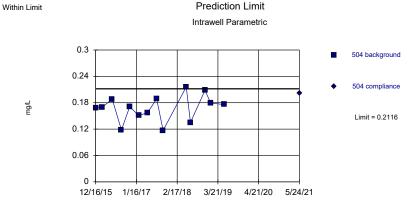


Prediction Limit

Background Data Summary: Mean=472.3, Std. Dev.=15.74, n=12. Insufficient data to test for seasonality: data were not deseasonalityed. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

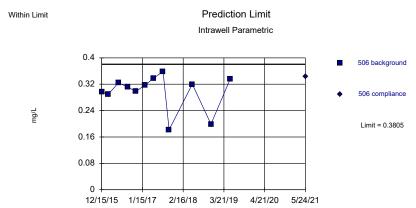
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=406.3, Std. Dev.=22.23, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8601, critical = 0.855. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

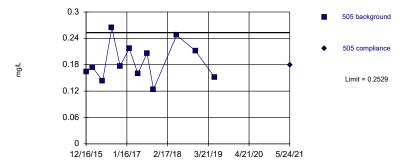
Constituent: Dissolved Solids Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley 12/15/2015 2/18/2016 5/25/2016 5/26/2016 8/23/2016 11/10/2016 11/11/2016 2/8/2017 5/3/2017 5/4/2017 8/1/2017 8/4/2017 10/3/2017 5/17/2018 11/15/2018 5/22/2019 5/24/2021 7/19/2021

9/2/2021

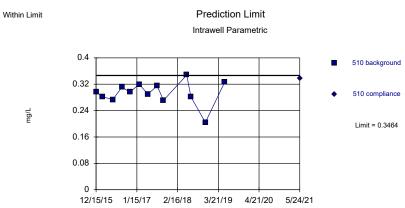

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.1674, Std. Dev =0.02979, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.825. Kappa = 1.486 (e=7, w=4, 1 of 3, event alpha = 0.09132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.2976, Std. Dev_=0.05377, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8104, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

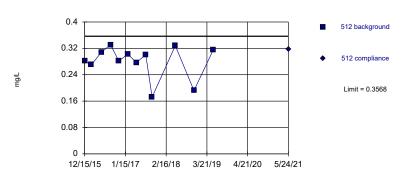


Background Data Summary: Mean=0.1867, Std. Dev.=0.04296, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

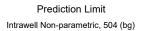
Background Data Summary: Mean=0.2934, Std. Dev=0.03503, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

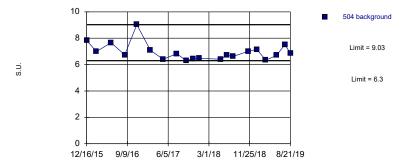

Constituent: Fluoride Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					0.296		0.296	
12/16/2015	0.168		0.164					
2/18/2016	0.17		0.174		0.29		0.282	
5/25/2016	0.188		0.143		0.324		0.273	
8/23/2016	0.118		0.265		0.312		0.311	
11/10/2016							0.296	
11/11/2016	0.171		0.177		0.298			
2/8/2017	0.151		0.217		0.317		0.32	
5/3/2017							0.29	
5/4/2017	0.157		0.16		0.338			
8/1/2017	0.189		0.206				0.315	
8/4/2017					0.359			
10/3/2017	0.117		0.124		0.182		0.271	
5/17/2018	0.216		0.247		0.32		0.348	
6/27/2018	0.135						0.282	
11/15/2018	0.208		0.212		0.199		0.204	
1/11/2019	0.179							
5/22/2019	0.176		0.151		0.336		0.326	
5/24/2021		0.201		0.18		0.344		0.338

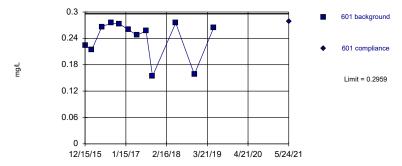
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.2799, Std. Dev.=0.04987, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8252, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 20 background values. Well-constituent pair annual alpha = 0.00225. Individual comparison alpha = 0.001125 (1 of 3). Assumes 1 future value. Seasonality was not detected with 95% confidence.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.0588, Std. Dev.=0.01866, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8225, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

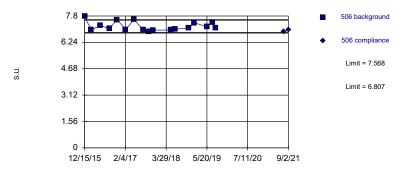
Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Seasonality was not detected with 95% confidence.

Constituent: Fluoride, pH Analysis Run 9/20/2021 12:29 PM View: LF III


6.97

Sibley Client: SCS Engineers Data: Sibley 512 512 601 601 504 505 12/15/2015 0.281 0.224 12/16/2015 7.83 7.74 2/18/2016 0.27 0.214 6.99 6.88 5/25/2016 0.308 7.42 7.66 5/26/2016 0.266 8/23/2016 0.331 0.275 6.74 6.79 0.282 11/11/2016 0.273 9.03 9.2 2/8/2017 0.302 0.26 7.09 6.84 5/3/2017 0.277 0.247 5/4/2017 6.4 6.8 8/1/2017 0.301 0.257 6.83 7.44 10/3/2017 0.172 0.154 6.3 6.98 11/16/2017 6.45 6.84 12/28/2017 6.47 6.85 5/17/2018 0.275 0.328 6.41 6.6 6/27/2018 6.7 6.82 8/8/2018 6.62 11/15/2018 0.192 0.158 7.01 7.09 1/11/2019 7.15 7.08 3/12/2019 6.34 6.78 5/22/2019 0.315 0.264 6.85 6.7 7/16/2019 7.53 8/21/2019 6.85 0.318 0.278 5/24/2021 7/19/2021 6.65

9/2/2021

Within Limits Pre

Background Data Summary: Mean=7.188, Std. Dev.=0.2694, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/20/2021 12:27 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

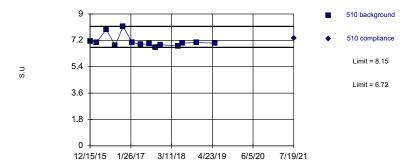
1.6

Within Limits

Prediction Limit
Intrawell Parametric

512 background

512 compliance
Limit = 7.45

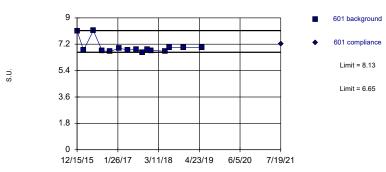

Limit = 6.692

12/15/15 2/4/17 3/29/18 5/20/19 7/11/20

Background Data Summary: Mean=7.071, Std. Dev.=0.2785, n=20. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8734, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.006393. Individual comparison alpha = 0.003199 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Ī	506	506	510	510	512	512	601	601
12/15/2015	7.78		7.14		7.29		8.11	
2/18/2016	6.97		7.05		7		6.8	
5/25/2016	7.24		7.95		7.18			
5/26/2016							8.13	
8/23/2016	7.04		6.84		6.77		6.75	
11/10/2016			8.15					
11/11/2016	7.58				6.8		6.71	
2/8/2017	7		7.06		7.7		6.93	
5/3/2017			6.94		6.92			
5/4/2017	7.59						6.81	
8/1/2017			6.95		6.97		6.84	
8/4/2017	6.98							
10/3/2017	6.88		6.72		6.79		6.65	
11/16/2017	6.96		6.9		6.92		6.84	
12/28/2017					6.88		6.78	
5/17/2018	6.97		6.82		6.85		6.72	
6/27/2018	7.02		7.01		6.95		6.98	
8/8/2018					6.78			
11/15/2018	7.08		7.05		7.09		6.96	
1/11/2019	7.4				7.34			
3/12/2019					7.23			
5/22/2019	7.16		7.01		7.25		6.97	
7/16/2019	7.43				7.7			
	7.11				7.01			
7/19/2021		6.86		7.36		6.78		7.21
9/2/2021		6.98				7.13		

Within Limit

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

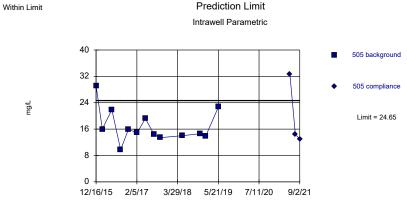
Intrawell Parametric

504 background
504 compliance
Limit = 38.15

12/16/15 1/16/17 2/17/18 3/21/19 4/21/20 5/24/21

Prediction Limit

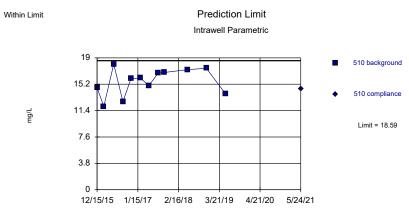
Background Data Summary: Mean=26.58, Std. Dev.=8.293, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Prediction Limit
Intrawell Parametric

506 background
506 compliance
Limit = 76.83


Background Data Summary: Mean=70.47, Std. Dev.=4.276, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9125, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Background Data Summary: Mean=16.9, Std. Dev.=5.117, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8783, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=15.58, Std. Dev.=1.955, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Sulfate Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					64.8		14.7	
12/16/2015	14.3		29.2					
2/18/2016	14.7		16		65.6		12	
5/25/2016	18.9		21.9		71		18.1	
8/23/2016	15.4		9.73		65.8		12.7	
11/10/2016							16	
11/11/2016	17.4		15.9		65			
2/8/2017	21		14.9		76.5		16.1	
5/3/2017							15	
5/4/2017	21.8		19.2		69.2			
8/1/2017	23.3		14.4				16.8	
8/4/2017					73.3			
10/3/2017	24.3		13.4		71.3		16.9	
5/17/2018	32.8		14		75.7		17.3	
6/27/2018	31.8							
8/8/2018	32.3							
11/15/2018	33.9		14.6		70.8		17.5	
1/11/2019	33.2		13.8		67.3			
3/12/2019	35.1							
5/22/2019	36.3		22.7		74.2		13.8	
7/16/2019	36.3				76.1			
8/21/2019	35.6							
5/24/2021		32.4		32.6		89.1		14.5
7/19/2021				14.4		89.1		
9/2/2021				13		88.7		

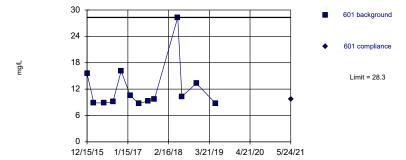
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

40

Exceeds Limit

| 200 | 512 background | 512 compliance | 120 | Limit = 44.8

12/15/15 2/4/17 3/29/18 5/20/19 7/11/20 9/2/21


Prediction Limit

Background Data Summary: Mean=32.21, Std. Dev.=9.019, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8926, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

12/15/2015 23 2/18/2016 21 5/25/2016 23.1 5/26/2016 8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	 				
12/15/2015 23 2/18/2016 21 5/25/2016 23.1 5/26/2016 8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104		512	512	601	601
5/25/2016 23.1 5/26/2016 8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	12/15/2015			15.5	
5/25/2016 23.1 5/26/2016 8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	2/18/2016			8.87	
5/26/2016 8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104					
8/23/2016 24.4 11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				8.85	
11/11/2016 24 2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104		24.4		9.11	
2/8/2017 27.8 5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				16.1	
5/3/2017 27.3 8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104		27.8		10.5	
8/1/2017 28.1 10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				8.71	
10/3/2017 28.2 5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				9.33	
5/17/2018 29.6 6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				9.76	
6/27/2018 30.3 8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104				28.3	
8/8/2018 30.9 11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	6/27/2018			10.3	
11/15/2018 51.4 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	8/8/2018	30.9			
3/12/2019 44.2 5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	11/15/2018	51.4		13.3	
5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	1/11/2019	43.3			
5/22/2019 40.1 7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	3/12/2019	44.2			
7/16/2019 42.1 8/21/2019 41 5/24/2021 110 7/19/2021 104	5/22/2019			8.74	
5/24/2021 110 7/19/2021 104		42.1			
7/19/2021 104	8/21/2019	41			
	5/24/2021		110		9.71
9/2/2021 107	7/19/2021		104		
	9/2/2021		107		

			Sibley	Client: SCS Engineers	Data: Sibley	Printed 9	/20/2021	, 12:29 PM			
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	504	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	505	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	506	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	510	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	512	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	601	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Calcium (mg/L)	504	40.91	n/a	5/24/2021	34.1	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	505	29.31	n/a	9/2/2021	34.1	Yes	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	506	102.9	n/a	9/2/2021	91.1	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	510	127.2	n/a	5/24/2021	116	No	13	0	x^3	0.00188	Param Intra 1 of 3
Calcium (mg/L)	512	111.3	n/a	9/2/2021	114	Yes	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	601	110.7	n/a	5/24/2021	97.4	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	504	3.91	n/a	5/24/2021	0.5ND	No	16	68.75	n/a	0.001026	NP Intra (NDs) 1 of 3
Chloride (mg/L)	505	3.13	n/a	9/2/2021	1.23	No	15	46.67	n/a	0.001313	NP Intra (normality)
Chloride (mg/L)	506	7.578	n/a	9/2/2021	8.03	Yes	17	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	510	3.762	n/a	5/24/2021	3.53	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	512	5.094	n/a	9/2/2021	10.2	Yes	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	601	6.1	n/a	5/24/2021	3.4	No	15	0	n/a	0.001313	NP Intra (normality)
Dissolved Solids (mg/l)	504	385	n/a	5/24/2021	174	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	505	180.3	n/a	9/2/2021	188	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	491.2	n/a	5/24/2021	433	No	12	0	x^5	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	510	496.5	n/a	5/24/2021	468	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	512	466.4	n/a	9/2/2021	555	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	440.6	n/a	5/24/2021	381	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	504	0.2116	n/a	5/24/2021	0.201	No	14	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	505	0.2529	n/a	5/24/2021	0.18	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	506	0.3805	n/a	5/24/2021	0.344	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	510	0.3464	n/a	5/24/2021	0.338	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	512	0.3568	n/a	5/24/2021	0.318	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	601	0.2959	n/a	5/24/2021	0.278	No	12	0	x^2	0.00188	Param Intra 1 of 3
pH (S.U.)	504	9.03	6.3	n/a	1 future	n/a	20	0	n/a	0.001125	NP Intra (normality)
pH (S.U.)	505	9.2	6.6	9/2/2021	6.97	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	506	7.568	6.807	9/2/2021	6.98	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	510	8.15	6.72	7/19/2021	7.36	No	14	0	n/a	0.003199	NP Intra (normality)
pH (S.U.)	512	7.45	6.692	9/2/2021	7.13	No	20	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	601	8.13	6.65	7/19/2021	7.21	No	15	0	n/a	0.002625	NP Intra (normality)
Sulfate (mg/L)	504	38.15	n/a	5/24/2021	32.4	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	505	24.65	n/a	9/2/2021	13	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	506	76.83	n/a	9/2/2021	88.7	Yes		0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	510	18.59	n/a	5/24/2021	14.5	No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	512	44.8	n/a	9/2/2021	107	Yes		0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	601	28.3	n/a	5/24/2021	9.71	No	13	0	n/a	0.001886	NP Intra (normality)

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021 January 3, 2021 Revision 1

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	otions	Month Season						
● In	ndividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
O M	ledian of Ea	ach:	Seasor	1					
Non	Dotoot / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 . 2009
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
	-
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Use Modified	Apha 0	.02						
✓ Test Residua	als For Normality	y (Parametric f	test only) using	Shapiro-Wilk/Fra	ancia v	at Alpha	= 0.01	~
Continue	Parametric if U	Inable to Nom	malize					
Never Tran	r of Powers g or No Transfo	mation						
Use Best V	V Statistic							
Plot Transfe	omed Values							
Include 95	_	e Interval arou	und Trend Line	Non-Detects Perd	cent > 75			
Note: there is no ". Mann-Kendall (the	•			•	•			

Data Output Trend Test Control Cht Prediction Lim 7	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
			sformation Use Ladder	of Powers			
✓ Test for Normality using Shapiro-Wilk/Francia ∨ a	t Alpha = 0.01	~ O	Natural Log	or No Tran	sfomation		
☑ Use Non-Parametric Test when Non-Detects Percent > 50]	0	Never Tran	sform			
Use Aitchison's Adjustment V when Non-Detects Percent >	15	Use Specific Transformation: Natural Log					
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50	Use Best W	/ Statistic			
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es		
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	☑ Plot Ba	her Background Tr ckground Data andard Deviati		ed at Alpha	a = 0.05 V		
Always Use Non-Parametric	Override D	F: (Override Kap	ppa:			
Facility Statistical Evaluations per Year: 2 Constituents Analyzed: 7 Downgradient (Compliance) Wells: 4	2-Tailed	tically Remove I Test Mode Deselected Dat	a Lighter	~			
Sampling Plan Comparing Individual Observations 1 of 1	Highes Most R	etric Limit = [] etric Limit wher t/Second High ecent PQL if a ecent Backgro	est Backgro vailable, or l	-Detects: ound Value MDL			

Data Output Trend Test Control Cht Prediction Lim Tolerance	im Conf/Tol Int	ANOVA	Welchs	Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney				
Use Modified Alpha 2-Tailed Test Mode	Combine Back	around Well	s on Mann	-Whitney
		g. 0 a		
Outlier Tests				
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)				
• Dixon's at $\alpha = 0.05 \lor$ or if n > $22 \lor$ Rosner's at $\alpha = 0.01 \lor$	✓ Use EPA Scree	ning to esta	blish Suspe	ected Outliers
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use	Ladder of Powers to	achieve B	est W Stat	
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1	~			
Stop if Non-Normal				
Continue with Parametric Test if Non-Normal				
○ Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers t	o achieve B	est W Stat	
✓ No Outlier If Less Than 3.0 Times Median				
Apply Rules found in Ohio Guidance Document 0715				
Combine Background Wells on the Outlier Report				
Piper, Stiff Diagram Combine Wells	✓ Label Constit	uente		
Combine Dates	✓ Label Constit	uents		
	✓ Note Cation-	Anion Balan	ce (Piner o	nlv)
Use Default Constituent Names Use Constituent Definition File Edit	- Hote cations	Thorr barain	oc (i ipci oi	,
O ose Consultaent Definition File Edit				

Appendix E.2 Fall 2021 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

April 1, 2022

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 Evergy Missouri West, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill

Fall 2021 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 15, 2021. Review and validation of the results from the November 2021 Detection Monitoring Event was completed on January 7, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 1, 2022 and March 2, 2022.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit established for upgradient monitoring well MW-505, two Appendix III constituents above their respective prediction limits established for monitoring well MW-506, and three Appendix III constituents above their respective prediction limits established for monitoring well MW-512.

Monitoring Well Constituent	*UPL	Observation November 15, 2021	1st Verification February 1, 2022	2nd Verification March 2, 2022
MW-505				
Total Dissolved Solids	180.3	181	182	185
MW-506				
Chloride	7.578	7.78	7.96	8.10
Sulfate	76.83	89.8	92.9	92.9
MW-512				
Chloride	5.094	9.69	9.14	6.61
Total Dissolved Solids	466.4	527	516	513
Sulfate	44.8	93.1	104	86.8

^{*}UPL - Upper Prediction Limit

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill April 1, 2022 Page 2 of 2

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified six SSIs above the background prediction limits. These include total dissolved solids (TDS) at upgradient monitoring well MW-505, chloride and sulfate at monitoring well MW-506, and chloride, TDS, and sulfate at monitoring well MW-512.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

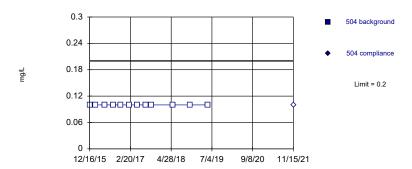
Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas™ Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill April 1, 2022


ATTACHMENT 1

Sanitas™ Output

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

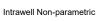
Prediction Limit Intrawell Non-parametric

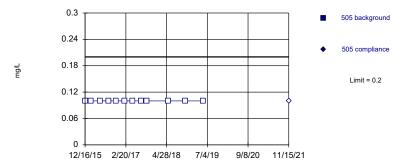
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 506 background 0.24 506 compliance 0.18 Limit = 0.2 0.06

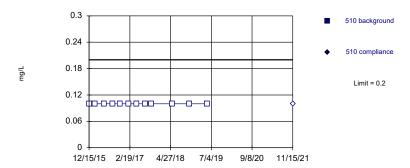

12/15/15 2/19/17 4/27/18 7/4/19


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

9/8/20 11/15/21

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit



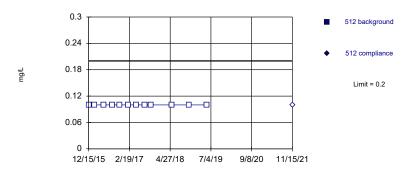
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 3/30/2022 4:28 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					<0.2		<0.2	
12/16/2015	<0.2		<0.2					
2/18/2016	<0.2		<0.2		<0.2		<0.2	
5/25/2016	<0.2		<0.2		<0.2		<0.2	
8/23/2016	<0.2		<0.2		<0.2		<0.2	
11/10/2016							<0.2	
11/11/2016	<0.2		<0.2		<0.2			
2/8/2017	<0.2		<0.2		<0.2		<0.2	
5/3/2017							<0.2	
5/4/2017	<0.2		<0.2		<0.2			
8/1/2017	<0.2		<0.2				<0.2	
8/4/2017					<0.2			
10/3/2017	<0.2		<0.2		<0.2		<0.2	
5/17/2018	<0.2		<0.2		<0.2		<0.2	
11/15/2018	<0.2		<0.2		<0.2		<0.2	
5/22/2019	<0.2		<0.2		<0.2		<0.2	
11/15/2021		<0.2		<0.2		<0.2		<0.2

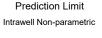
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

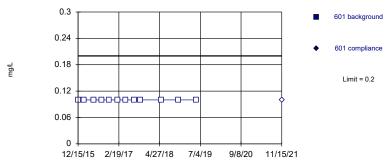
Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Prediction Limit Within Limit Intrawell Parametric 50 504 background 40 504 compliance 30 Limit = 40.91 20 10 12/16/15 2/20/17 4/28/18 7/4/19 9/8/20 11/15/21

Background Data Summary: Mean=34.4, Std. Dev.=4.551, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

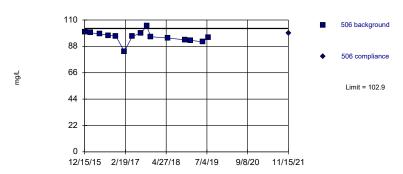
Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

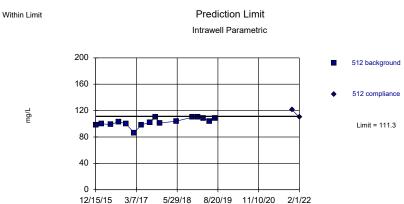
Prediction Limit Within Limit Intrawell Parametric 40 505 background 32 505 compliance 24 Limit = 29.31 16 12/16/15 2/20/17 4/28/18 7/4/19 9/8/20

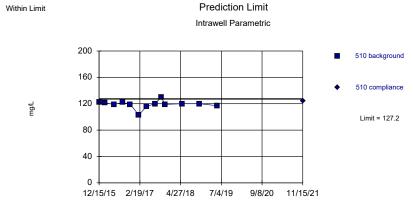

Background Data Summary: Mean=25.96, Std. Dev.=2.346, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9775, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron, Calcium Analysis Run 3/30/2022 4:28 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

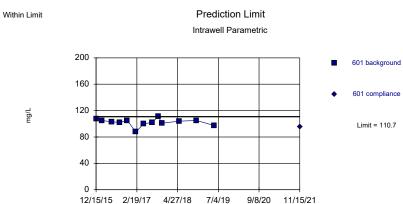
				-	_	-		
	512	512	601	601	504	504	505	505
12/15/2015	<0.2		<0.2					
12/16/2015					31.5		28	
2/18/2016	<0.2		<0.2		34.3		25.4	
5/25/2016	<0.2				30.2		24.6	
5/26/2016			<0.2					
8/23/2016	<0.2		<0.2		32.2		25.7	
11/11/2016	<0.2		<0.2		36.9		21.6	
2/8/2017	<0.2		<0.2		29.6		23.5	
5/3/2017	<0.2		<0.2					
5/4/2017					27.7		23.2	
8/1/2017	<0.2		<0.2		30.5		25.1	
10/3/2017	<0.2		<0.2		33.2		26.6	
11/16/2017					37.6		26	
5/17/2018	<0.2		<0.2		33.3		28.2	
6/27/2018							25.8	
11/15/2018	<0.2		<0.2		45		30.8	
1/11/2019					39.3		29.5	
3/12/2019					35.4		24.9	
5/22/2019	<0.2		<0.2		33.1		26.4	
7/16/2019					40.6			
11/15/2021		<0.2		<0.2		35.3		27.7




Background Data Summary: Mean=95.97, Std. Dev.=4.734, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9252, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Calcium Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

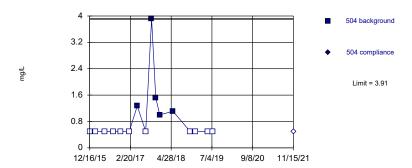

Background Data Summany: Mean=102.6, Std. Dev.=6.094, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Background Data Summary (based on cube transformation): Mean=1699613, Std. Dev.=238011, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilki @alpha = 0.01, calculated = 0.8274, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=102.3, Std. Dev.=5.577, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8789, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05182). Report alpha = 0.00182.


Constituent: Calcium Analysis Run 3/30/2022 4:28 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

				Olbiey C	ment. 000 Engineers	bata. Olbicy		
	506	506	510	510	512	512	601	601
12/15/2015	100		122		98.1		107	
2/18/2016	99.3		121		100		105	
5/25/2016	98.3		119		98.9			
5/26/2016							103	
8/23/2016	97.2		122		103		102	
11/10/2016			119					
11/11/2016	96.5				100		105	
2/8/2017	83.6		103		86.4		87.5	
5/3/2017			116		98.4		100	
5/4/2017	96.4							
8/1/2017			120		102		102	
8/4/2017	99							
10/3/2017	105		130		110		111	
11/16/2017	96		119		101		101	
5/17/2018	94.9		120		104		104	
11/15/2018	93.4		120		110		105	
1/11/2019	93				110			
3/12/2019					108			
5/22/2019	91.7		117		104		97.4	
7/16/2019	95.3				108			
11/15/2021		98.8		124		121		95.6
2/1/2022						110 1st Ve	erification	

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

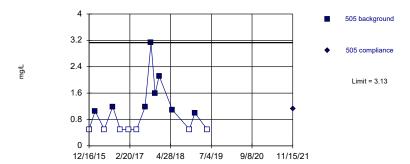
Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

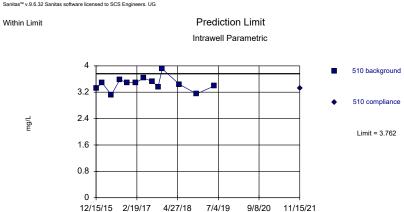

Prediction Limit Exceeds Limit Intrawell Parametric 9 506 background 506 compliance Limit = 7.578 3.6 1.8 12/15/15 3/12/17 6/9/18 9/6/19 12/3/20 3/2/22

Background Data Summary: Mean=6.479, Std. Dev.=0.7774, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8712, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Non-parametric



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 3/30/2022 4:10 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

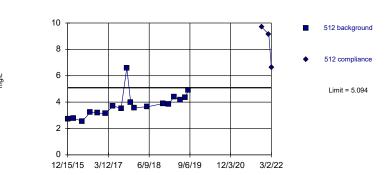
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=3.454, Std. Dev.=0.2034, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/30/2022 4:28 PM View: LF III

1st Verification

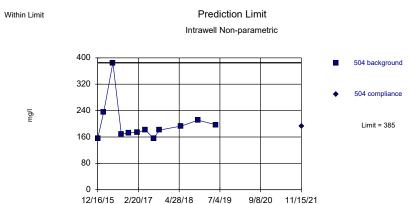
2nd Verification


7.96

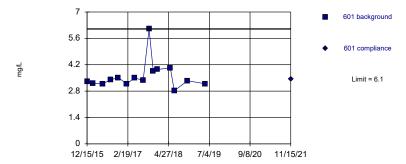
Sibley Client: SCS Engineers Data: Sibley 504 504 505 505 510 510 12/15/2015 6.45 3.33 12/16/2015 <1 <1 2/18/2016 <1 1.05 6.15 3.48 5/25/2016 3.12 <1 <1 5.76 8/23/2016 <1 1.19 6.16 3.58 11/10/2016 3.49 11/11/2016 <1 6.13 <1 2/8/2017 <1 <1 5.89 3.49 5/3/2017 3.63 6.15 5/4/2017 1.27 <1 8/1/2017 <1 1.18 3.53 8/4/2017 5.45 10/3/2017 8.74 3.91 3.13 3.36 11/16/2017 1.52 1.59 6.15 3.91 12/28/2017 1 2.12 5/17/2018 1.11 1.09 6.69 3.44 6/27/2018 5.8 11/15/2018 6.69 3.15 <1 <1 1/11/2019 <1 1 6.39 5/22/2019 <1 <1 7.05 3.39 7/16/2019 <1 7.33 8/21/2019 7.17 11/15/2021 <1 1.13 7.78 3.33

2/1/2022

3/2/2022

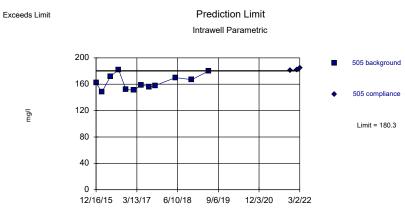

Exceeds Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.786, Std. Dev.=0.9366, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

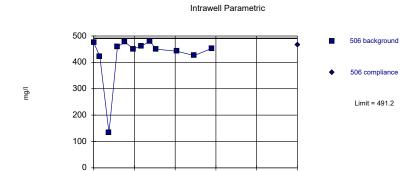

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=163.1, Std. Dev.=11.19, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9461, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride, Dissolved Solids Analysis Run 3/30/2022 4:28 PM View: LF III

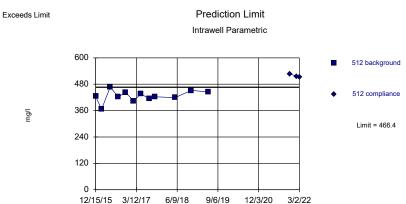
Sibley Client: SCS Engineers Data: Sibley

ı	512	512	601	601	504	504	505	505	
12/15/2015	2.72		3.3						
12/16/2015					155		162		
2/18/2016	2.78		3.22		236		148		
5/25/2016	2.55				385		172		
5/26/2016			3.18						
8/23/2016	3.23		3.41		168		182		
11/11/2016	3.17		3.51		173		152		
2/8/2017	3.14		3.19		174		151		
5/3/2017	3.7		3.5						
5/4/2017					181		159		
8/1/2017	3.53		3.37		156		156		
10/3/2017	6.59		6.1		181		158		
11/16/2017	3.97		3.87						
12/28/2017	3.58		3.95						
5/17/2018	3.64		4.02		193		170		
6/27/2018			2.82						
11/15/2018	3.89		3.35		211		167		
1/11/2019	3.85								
3/12/2019	4.38								
5/22/2019	4.17		3.19		197		180		
7/16/2019	4.35								
8/21/2019	4.91								
11/15/2021		9.69		3.44		192		181	
2/1/2022		9.14 1st Verifica	ation					182	1st Verification
3/2/2022		6.61 2nd Verific	ation					185	2nd Verification

Within Limit

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit


Background Data Summary (based on x^5 transformation): Mean=1.8e13, Std. Dev.=6.8e12, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8456, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

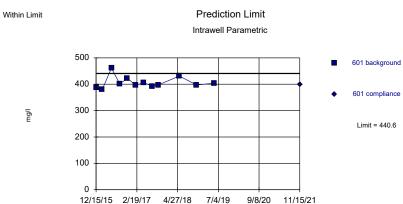
9/8/20 11/15/21

12/15/15 2/19/17 4/27/18 7/4/19

Constituent: Dissolved Solids Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

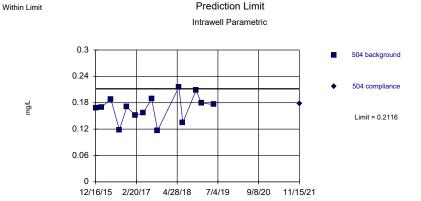
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=426.3, Std. Dev.=25.95, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9454, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.



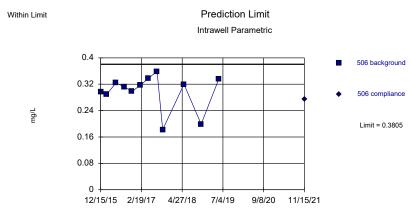
Background Data Summary: Mean=472.3, Std. Dev.=15.74, n=12. Insufficient data to test for seasonality: data were not deseasonalityed. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=406.3, Std. Dev.=22.23, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8601, critical = 0.855. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Dissolved Solids Analysis Run 3/30/2022 4:28 PM View: LF III

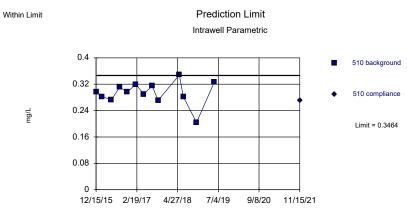

				Sibley Cl	ient: SCS Engineers	Data: Sibley			
	506	506	510	510	512	512	601	601	
12/15/2015	475		489		425		387		
2/18/2016	423		446		366		380		
5/25/2016	133		451		467				
5/26/2016							461		
8/23/2016	459		472		422		401		
11/10/2016			468						
11/11/2016	477				443		423		
2/8/2017	451		462		404		396		
5/3/2017			486		436		406		
5/4/2017	462								
8/1/2017			456		414		393		
8/4/2017	480								
10/3/2017	450		485		423		397		
5/17/2018	442		494		419		431		
11/15/2018	426		478		452		397		
5/22/2019	453		480		445		404		
11/15/2021		466		486		527		399	
2/1/2022						516 1st Ve	erification		
3/2/2022						513 2nd V	erification		

Background Data Summary: Mean=0.1674, Std. Dev.=0.02979, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

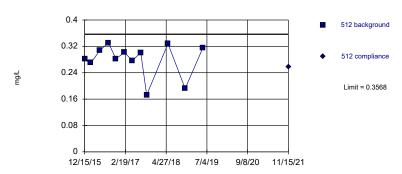
Background Data Summary: Mean=0.2976, Std. Dev_=0.05377, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8104, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.1867, Std. Dev.=0.04296, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

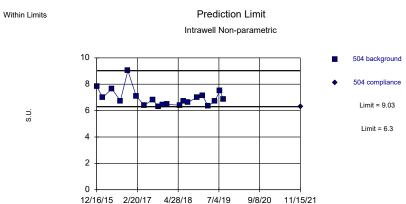
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=0.2934, Std. Dev=0.03503, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

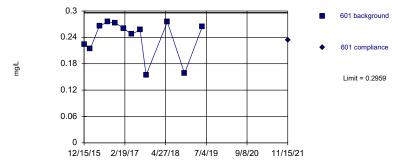
Constituent: Fluoride Analysis Run 3/30/2022 4:28 PM View: LF III

ata: Sibley
);

			l					
	504	504	505	505	506	506	510	510
12/15/2015					0.296		0.296	
12/16/2015	0.168		0.164					
2/18/2016	0.17		0.174		0.29		0.282	
5/25/2016	0.188		0.143		0.324		0.273	
8/23/2016	0.118		0.265		0.312		0.311	
11/10/2016							0.296	
11/11/2016	0.171		0.177		0.298			
2/8/2017	0.151		0.217		0.317		0.32	
5/3/2017							0.29	
5/4/2017	0.157		0.16		0.338			
8/1/2017	0.189		0.206				0.315	
8/4/2017					0.359			
10/3/2017	0.117		0.124		0.182		0.271	
5/17/2018	0.216		0.247		0.32		0.348	
6/27/2018	0.135						0.282	
11/15/2018	0.208		0.212		0.199		0.204	
1/11/2019	0.179							
5/22/2019	0.176		0.151		0.336		0.326	
11/15/2021		0.178		0.181		0.275		0.271


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.2799, Std. Dev=0.04987, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8252, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 20 background values. Well-constituent pair annual alpha = 0.00225. Individual comparison alpha = 0.001125 (1 of 3). Seasonality was not detected with 95% confidence.

Background Data Summary (based on square transformation): Mean=0.0588, Std. Dev.=0.01866, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8225, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/30/2022 4:10 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Non-parametric

505 background
505 compliance
Limit = 9.2
Limit = 6.6

12/16/15 3/13/17 6/10/18 9/6/19

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Seasonality was not detected with 95% confidence.

12/3/20

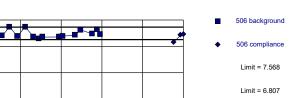
3/2/22

Constituent: Fluoride, pH Analysis Run 3/30/2022 4:28 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601	504	504	505	505
12/15/2015	0.281		0.224					
12/16/2015					7.83		7.74	
2/18/2016	0.27		0.214		6.99		6.88	
5/25/2016	0.308				7.66		7.42	
5/26/2016			0.266					
8/23/2016	0.331		0.275		6.74		6.79	
11/11/2016	0.282		0.273		9.03		9.2	
2/8/2017	0.302		0.26		7.09		6.84	
5/3/2017	0.277		0.247					
5/4/2017					6.4		6.8	
8/1/2017	0.301		0.257		6.83		7.44	
10/3/2017	0.172		0.154		6.3		6.98	
11/16/2017					6.45		6.84	
12/28/2017					6.47		6.85	
5/17/2018	0.328		0.275		6.41		6.6	
6/27/2018					6.7		6.82	
8/8/2018					6.62			
11/15/2018	0.192		0.158		7.01		7.09	
1/11/2019					7.15		7.08	
3/12/2019					6.34		6.78	
5/22/2019	0.315		0.264		6.7		6.85	
7/16/2019					7.53			
8/21/2019					6.85			
11/15/2021		0.257		0.234		6.31		6.37
2/1/2022								6.72 1st Verification
3/2/2022								7.01 Extra Sample

4.8


3.2

1.6

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric

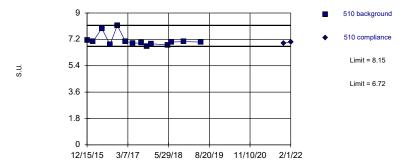
12/15/15 3/12/17 6/9/18

3/2/22

Background Data Summary: Mean=7.188, Std. Dev.=0.2694, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

9/6/19 12/3/20

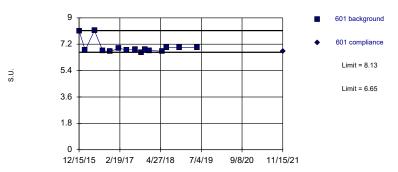
Constituent: pH Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.071, Std. Dev.=0.2785, n=20. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8734, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limits Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.006393. Individual comparison alpha = 0.003199 (1 of 3). Seasonality was not detected with 95% confidence.

Constituent: pH Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 3/30/2022 4:28 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	506	506	510	510	512	512	601	601
12/15/2015	7.78		7.14		7.29		8.11	
2/18/2016	6.97		7.05		7		6.8	
5/25/2016	7.24		7.95		7.18			
5/26/2016							8.13	
8/23/2016	7.04		6.84		6.77		6.75	
11/10/2016			8.15					
11/11/2016	7.58				6.8		6.71	
2/8/2017	7		7.06		7.7		6.93	
5/3/2017			6.94		6.92			
5/4/2017	7.59						6.81	
8/1/2017			6.95		6.97		6.84	
8/4/2017	6.98							
10/3/2017	6.88		6.72		6.79		6.65	
11/16/2017	6.96		6.9		6.92		6.84	
12/28/2017					6.88		6.78	
5/17/2018	6.97		6.82		6.85		6.72	
6/27/2018	7.02		7.01		6.95		6.98	
8/8/2018					6.78			
11/15/2018	7.08		7.05		7.09		6.96	
1/11/2019	7.4				7.34			
3/12/2019					7.23			
5/22/2019	7.16		7.01		7.25		6.97	
7/16/2019	7.43				7.7			
8/21/2019	7.11				7.01			
11/15/2021		6.65		6.94		6.25		6.71
2/1/2022		7.09 1st Verificati		7.03 Extra Samp	le	7 1st Verific		
3/2/2022		7.11 Extra Samp	le			6.83 Extra Sa	mple	

Within Limit

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=26.58, Std. Dev.=8.293, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit

Intrawell Parametric

506 background

506 compliance

Limit = 76.83

Background Data Summary: Mean=70.47, Std. Dev.=4.276, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9125, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00132.

Intrawell Parametric

505 background

505 compliance

Limit = 24.65

Prediction Limit

Background Data Summary: Mean=16.9, Std. Dev.=5.117, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8783, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184

Constituent: Sulfate Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit Intrawell Parametric 510 background 510 compliance Limit = 18.59

Background Data Summary: Mean=15.58, Std. Dev.=1.955, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/30/2022 4:28 PM View: LF III

Siblev	Client: SCS Engineers	Data: Sibley
Sibley	Client: SCS Engineers	Data: Sib

	504	504	505	505	506	506	510	510		
12/15/2015					64.8		14.7			
12/16/2015	14.3		29.2							
2/18/2016	14.7		16		65.6		12			
5/25/2016	18.9		21.9		71		18.1			
8/23/2016	15.4		9.73		65.8		12.7			
11/10/2016							16			
11/11/2016	17.4		15.9		65					
2/8/2017	21		14.9		76.5		16.1			
5/3/2017							15			
5/4/2017	21.8		19.2		69.2					
8/1/2017	23.3		14.4				16.8			
8/4/2017					73.3					
10/3/2017	24.3		13.4		71.3		16.9			
5/17/2018	32.8		14		75.7		17.3			
6/27/2018	31.8									
8/8/2018	32.3									
11/15/2018	33.9		14.6		70.8		17.5			
1/11/2019	33.2		13.8		67.3					
3/12/2019	35.1									
5/22/2019	36.3		22.7		74.2		13.8			
7/16/2019	36.3				76.1					
8/21/2019	35.6									
11/15/2021		27.9		20.4		89.8		21.4		
2/1/2022						92.9	1st Verification	14.4	1st Verification	
3/2/2022						92.9	2nd Verification			



Background Data Summary: Mean=32.21, Std. Dev.=9.019, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8926, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 3/30/2022 4:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 3/30/2022 4:28 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601
12/15/2015	23		15.5	
2/18/2016	21		8.87	
5/25/2016	23.1		0.07	
5/26/2016	20.1		8.85	
8/23/2016	24.4		9.11	
11/11/2016	24		16.1	
2/8/2017	27.8		10.5	
5/3/2017			8.71	
	27.3			
8/1/2017	28.1		9.33	
10/3/2017	28.2		9.76	
5/17/2018	29.6		28.3	
6/27/2018	30.3		10.3	
8/8/2018	30.9			
11/15/2018	51.4		13.3	
1/11/2019	43.3			
3/12/2019	44.2			
5/22/2019	40.1		8.74	
7/16/2019	42.1			
8/21/2019	41			
11/15/2021		93.1		9.32
2/1/2022		104	1st Verification	
3/2/2022		86.8	2nd Verification	

			Sibley	Client: SCS Engineers	Data: Sibley	Printed 3	/30/2022	2, 4:28 PM			
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	504	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	505	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	506	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	510	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	512	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	601	0.2	n/a	11/15/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Calcium (mg/L)	504	40.91	n/a	11/15/2021	35.3	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	505	29.31	n/a	11/15/2021	27.7	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	506	102.9	n/a	11/15/2021	98.8	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	510	127.2	n/a	11/15/2021	124	No	13	0	x^3	0.00188	Param Intra 1 of 3
Calcium (mg/L)	512	111.3	n/a	2/1/2022	110	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	601	110.7	n/a	11/15/2021	95.6	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	504	3.91	n/a	11/15/2021	0.5ND	No	16	68.75	n/a	0.001026	NP Intra (NDs) 1 of 3
Chloride (mg/L)	505	3.13	n/a	11/15/2021	1.13	No	15	46.67	n/a	0.001313	NP Intra (normality)
Chloride (mg/L)	506	7.578	n/a	3/2/2022	8.1	Yes	17	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	510	3.762	n/a	11/15/2021	3.33	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	512	5.094	n/a	3/2/2022	6.61	Yes	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	601	6.1	n/a	11/15/2021	3.44	No	15	0	n/a	0.001313	NP Intra (normality)
Dissolved Solids (mg/l)	504	385	n/a	11/15/2021	192	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	505	180.3	n/a	3/2/2022	185	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	491.2	n/a	11/15/2021	466	No	12	0	x^5	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	510	496.5	n/a	11/15/2021	486	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	512	466.4	n/a	3/2/2022	513	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	440.6	n/a	11/15/2021	399	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	504	0.2116	n/a	11/15/2021	0.178	No	14	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	505	0.2529	n/a	11/15/2021	0.181	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	506	0.3805	n/a	11/15/2021	0.275	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	510	0.3464	n/a	11/15/2021	0.271	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	512	0.3568	n/a	11/15/2021	0.257	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	601	0.2959	n/a	11/15/2021	0.234	No	12	0	x^2	0.00188	Param Intra 1 of 3
pH (S.U.)	504	9.03	6.3	11/15/2021	6.31	No	20	0	n/a	0.001125	NP Intra (normality)
pH (S.U.)	505	9.2	6.6	3/2/2022	7.01	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	506	7.568	6.807	3/2/2022	7.11	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	510	8.15	6.72	2/1/2022	7.03	No	14	0	n/a	0.003199	NP Intra (normality)
pH (S.U.)	512	7.45	6.692	3/2/2022	6.83	No	20	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	601	8.13	6.65	11/15/2021	6.71	No	15	0	n/a	0.002625	NP Intra (normality)
Sulfate (mg/L)	504	38.15	n/a	11/15/2021	27.9	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	505	24.65	n/a	11/15/2021	20.4	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	506	76.83	n/a	3/2/2022	92.9	Yes	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	510	18.59	n/a	2/1/2022	14.4	No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	512	44.8	n/a	3/2/2022	86.8	Yes	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	601	28.3	n/a	11/15/2021	9.32	No	13	0	n/a	0.001886	NP Intra (normality)

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill April 1, 2022

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
O M	ledian of Ea	ach:	Seasor	1					
Non	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 . 2009
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
	-
Printer: Adobe PDF	∨ Printers

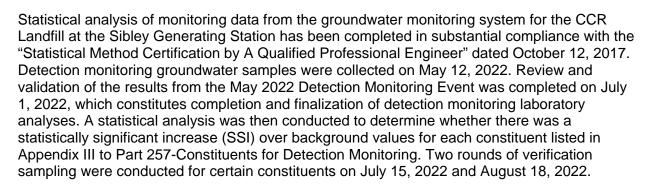
Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests				
Use Modified	Alpha 0	.02										
✓ Test Residuals For Normality (Parametric test only) using Shapiro-Wilk/Francia ∨ at Alpha = 0.01 ∨												
Continue	Parametric if U	Inable to Nom	malize									
Never Tran	r of Powers g or No Transfo	mation										
Use Best V	V Statistic											
☐ Plot Transfo	omed Values											
Use Non-Parametric Test (Sen's Slope/Mann-Kendall) when Non-Detects Percent > 75 Include 95. % Confidence Interval around Trend Line Automatically Remove Outliers (Parametric test only)												
Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope / Mann-Kendall (the non-parametric alternative) is available as a report in its own right, under Analysis->Intrawell->Trend.												

Data Output Trend Test Control Cht Prediction Lim 7	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
			sformation - Use Ladder	of Powers				
✓ Test for Normality using Shapiro-Wilk/Francia ∨ a	t Alpha = 0.01	~ O	Natural Log	or No Tran	sformation			
☑ Use Non-Parametric Test when Non-Detects Percent > 50	Never Transform							
Use Aitchison's Adjustment V when Non-Detects Percent >	15	0	Use Specifi	c Transform Natural				
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50	Use Best W	Statistic				
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es			
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	☑ Plot Ba	her Background Tr ckground Data andard Deviati		ed at Alpha	a = 0.05 V			
Always Use Non-Parametric	Override DF: Override Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter							
Facility Statistical Evaluations per Year: 2 Constituents Analyzed: 7 Downgradient (Compliance) Wells: 4								
Sampling Plan Comparing Individual Observations 1 of 1	Non-Parametric Limit = Highest Background Value Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)							

Data Output Trend Test Control Cht Prediction Lim Tolerance	im Conf/Tol Int	ANOVA	Welchs	Other Tests							
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney											
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney											
Outlier Tests											
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)											
• Dixon's at $\alpha = 0.05 \lor$ or if n > $22 \lor$ Rosner's at $\alpha = 0.01 \lor$	✓ Use EPA Scree	ning to esta	blish Suspe	ected Outliers							
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use	Ladder of Powers to	achieve B	est W Stat								
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1	~										
Stop if Non-Normal											
Continue with Parametric Test if Non-Normal											
○ Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers t	o achieve B	est W Stat								
✓ No Outlier If Less Than 3.0 Times Median											
Apply Rules found in Ohio Guidance Document 0715											
Combine Background Wells on the Outlier Report											
Piper, Stiff Diagram Combine Wells	✓ Label Constit	uente									
Combine Dates	✓ Label Constit	uents									
Use Default Constituent Names	✓ Note Cation-	Anion Balan	ce (Piner o	nlv)							
Use Constituent Definition File Edit											
O ose Consultaent Definition File Edit											

APPENDIX E.3 Spring 2022 Semiannual Detection Monitoring Statistical Analyses	


MEMORANDUM

September 28, 2022

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 Evergy Missouri West, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2022 Semiannual Detection Monitoring 40 CFR 257.94

The completed statistical evaluation identified two Appendix III constituents above their prediction limits established for monitoring well MW-506.

Monitoring Well Constituent	*UPL	Observation May 12, 2022	1st Verification July 15, 2022	2nd Verification August 18, 2022	
MW-506					
Chloride	7.578	8.39	8.5	12.5/8.54**	
Sulfate	76.83	99	102	95.5	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified two SSIs above the background prediction limits. These include chloride and sulfate at monitoring well MW-506.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results

^{**}Duplicate Sample Result

Sibley Generating Station
Determination of Statistically Significant Increases
CCR Landfill
September 28, 2022
Page 2 of 2

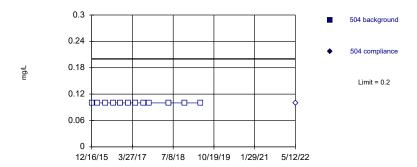
(when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2022


ATTACHMENT 1

Sanitas™ Output

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Within Limit Prediction Limit
Intrawell Non-parametric

0.3

0.24

0.18

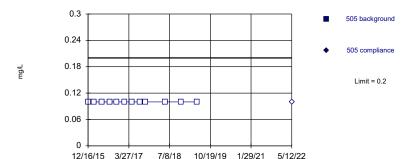
0.12

0.12

0.06

Limit = 0.2

12/15/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22

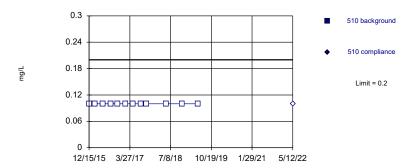

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas w v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

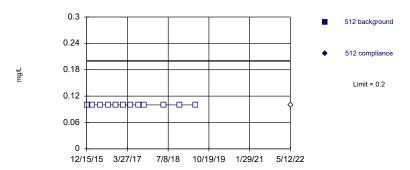
Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonalize data were not deseasonalized.

Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley


Constituent: Boron Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					<0.2		<0.2	
12/16/2015	<0.2		<0.2					
2/18/2016	<0.2		<0.2		<0.2		<0.2	
5/25/2016	<0.2		<0.2		<0.2		<0.2	
8/23/2016	<0.2		<0.2		<0.2		<0.2	
11/10/2016							<0.2	
11/11/2016	<0.2		<0.2		<0.2			
2/8/2017	<0.2		<0.2		<0.2		<0.2	
5/3/2017							<0.2	
5/4/2017	<0.2		<0.2		<0.2			
8/1/2017	<0.2		<0.2				<0.2	
8/4/2017					<0.2			
10/3/2017	<0.2		<0.2		<0.2		<0.2	
5/17/2018	<0.2		<0.2		<0.2		<0.2	
11/15/2018	<0.2		<0.2		<0.2		<0.2	
5/22/2019	<0.2		<0.2		<0.2		<0.2	
5/12/2022		<0.2		<0.2		<0.2		<0.2

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Parametric

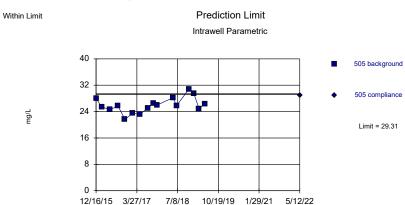
50
40
40
504 background
504 compliance
Limit = 40.91


Background Data Summary: Mean=34.4, Std. Dev.=4.551, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/6/2022 6:10 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

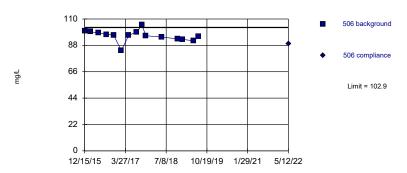
Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/6/2022 6:10 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=25.96, Std. Dev.=2.346, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9775, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Constituent: Boron, Calcium Analysis Run 9/6/2022 6:14 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	512	512	601	601	504	504	505	505
12/15/2015	<0.2		<0.2					
12/16/2015					31.5		28	
2/18/2016	<0.2		<0.2		34.3		25.4	
5/25/2016	<0.2				30.2		24.6	
5/26/2016			<0.2					
8/23/2016	<0.2		<0.2		32.2		25.7	
11/11/2016	<0.2		<0.2		36.9		21.6	
2/8/2017	<0.2		<0.2		29.6		23.5	
5/3/2017	<0.2		<0.2					
5/4/2017					27.7		23.2	
8/1/2017	<0.2		<0.2		30.5		25.1	
10/3/2017	<0.2		<0.2		33.2		26.6	
11/16/2017					37.6		26	
5/17/2018	<0.2		<0.2		33.3		28.2	
6/27/2018							25.8	
11/15/2018	<0.2		<0.2		45		30.8	
1/11/2019					39.3		29.5	
3/12/2019					35.4		24.9	
5/22/2019	<0.2		<0.2		33.1		26.4	
7/16/2019					40.6			
5/12/2022		<0.2		<0.2		28.7		28.9

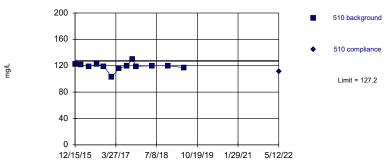
Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=95.97, Std. Dev.=4,734, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Calcium Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

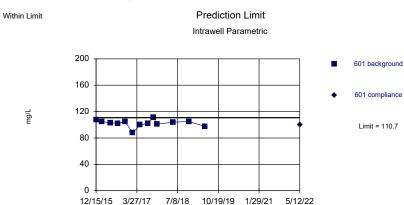
Within Limit Prediction Limit Intrawell Parametric


120
96
512 background
512 compliance

124
48
24
12/15/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22

Background Data Summany: Mean=102.6, Std. Dev.=6.094, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

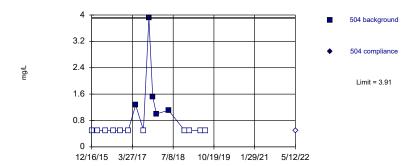


Background Data Summary (based on cube transformation): Mean=1699613, Std. Dev.=238011, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8274, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/6/2022 6:10 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=102.3, Std. Dev.=5.577, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8789, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.


Constituent: Calcium Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

			,	Ü	ŭ		•	
	506	506	510	510	512	512	601	601
12/15/2015	100		122		98.1		107	
2/18/2016	99.3		121		100		105	
5/25/2016	98.3		119		98.9			
5/26/2016							103	
8/23/2016	97.2		122		103		102	
11/10/2016			119					
11/11/2016	96.5				100		105	
2/8/2017	83.6		103		86.4		87.5	
5/3/2017			116		98.4		100	
5/4/2017	96.4							
8/1/2017			120		102		102	
8/4/2017	99							
10/3/2017	105		130		110		111	
11/16/2017	96		119		101		101	
5/17/2018	94.9		120		104		104	
11/15/2018	93.4		120		110		105	
1/11/2019	93				110			
3/12/2019					108			
5/22/2019	91.7		117		104		97.4	
7/16/2019	95.3				108			
5/12/2022		89.4		111		111		100

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

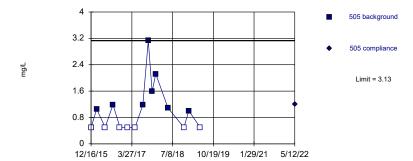
Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/6/2022 6:10 PM View: LF III

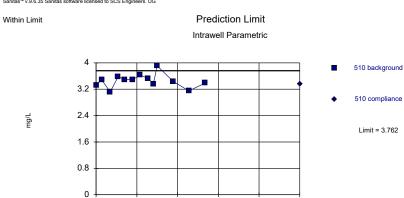
Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=6.479, Std. Dev.=0.7774, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8712, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit

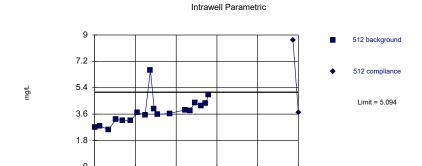


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/6/2022 6:10 PM View: LF III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

12/15/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22


Background Data Summary: Mean=3.454, Std. Dev.=0.2034, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

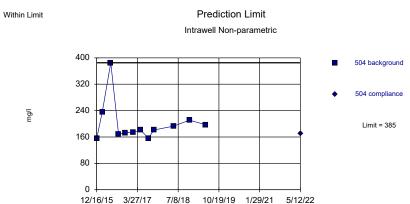
Constituent: Chloride Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	5	510	510
12/15/2015					6.45		3	3.33	
12/16/2015	<1		<1						
2/18/2016	<1		1.05		6.15		3	3.48	
5/25/2016	<1		<1		5.76		3	3.12	
8/23/2016	<1		1.19		6.16		3	3.58	
11/10/2016							3	3.49	
11/11/2016	<1		<1		6.13				
2/8/2017	<1		<1		5.89		3	3.49	
5/3/2017							3	3.63	
5/4/2017	1.27		<1		6.15				
8/1/2017	<1		1.18				3	3.53	
8/4/2017					5.45				
10/3/2017	3.91		3.13		8.74		3	3.36	
11/16/2017	1.52		1.59		6.15		3	3.91	
12/28/2017	1		2.12						
5/17/2018	1.11		1.09		6.69		3	3.44	
6/27/2018					5.8				
11/15/2018	<1		<1		6.69		3	3.15	
1/11/2019	<1		1		6.39				
5/22/2019	<1		<1		7.05		3	3.39	
7/16/2019	<1				7.33				
8/21/2019					7.17				
5/12/2022		<1		1.2		8.39			3.35
7/15/2022						8.5	1st Verific	ation	
8/18/2022						12.5	2nd Verifi	ication	

Within Limit

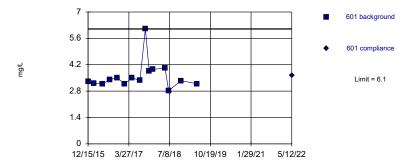
e licensed to SCS Engineers. UG Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit


Background Data Summary: Mean=3.786, Std. Dev.=0.9366, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

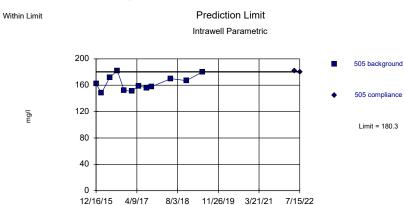
8/2/18 11/26/19 3/21/21 7/15/22

Constituent: Chloride Analysis Run 9/6/2022 6:10 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

12/15/15 4/8/17

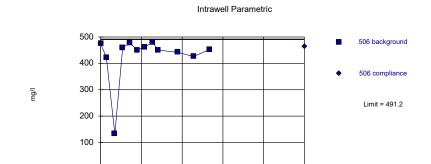
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 9/6/2022 6:10 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

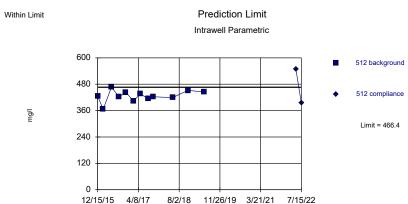

Background Data Summary: Mean=163.1, Std. Dev.=11.19, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.014, calculated = 0.9461, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Chloride, Dissolved Solids Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

			•	•	•	,	•	
T	512	512	601	601	504	504	505	505
12/15/2015	2.72		3.3					
12/16/2015					155		162	
2/18/2016	2.78		3.22		236		148	
5/25/2016	2.55				385		172	
5/26/2016			3.18					
8/23/2016	3.23		3.41		168		182	
11/11/2016	3.17		3.51		173		152	
2/8/2017	3.14		3.19		174		151	
5/3/2017	3.7		3.5					
5/4/2017					181		159	
8/1/2017	3.53		3.37		156		156	
10/3/2017	6.59		6.1		181		158	
11/16/2017	3.97		3.87					
12/28/2017	3.58		3.95					
5/17/2018	3.64		4.02		193		170	
6/27/2018			2.82					
11/15/2018	3.89		3.35		211		167	
1/11/2019	3.85							
3/12/2019	4.38							
5/22/2019	4.17		3.19		197		180	
7/16/2019	4.35							
8/21/2019	4.91							
5/12/2022		8.66		3.64		171		182
7/15/2022		3.71 1st Verifi	cation					180 1st Verification

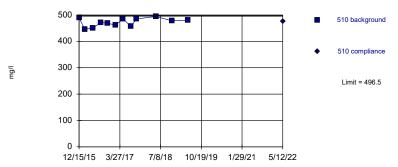
Within Limit

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG **Prediction Limit**



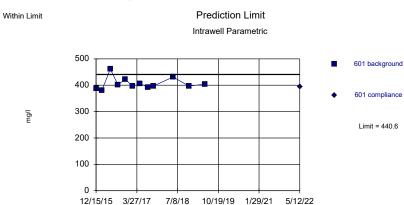
Background Data Summary (based on x^5 transformation): Mean=1.8e13, Std. Dev.=6.8e12, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8456, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

12/15/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22


Constituent: Dissolved Solids Analysis Run 9/6/2022 6:11 PM View: LF III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

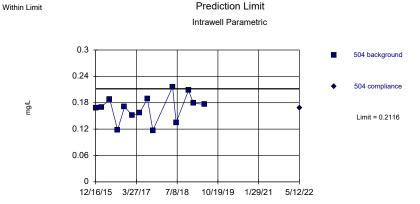
Background Data Summary: Mean=426.3, Std. Dev.=25.95, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9454, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=472.3, Std. Dev.=15.74, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Dissolved Solids Analysis Run 9/6/2022 6:11 PM View: LF III

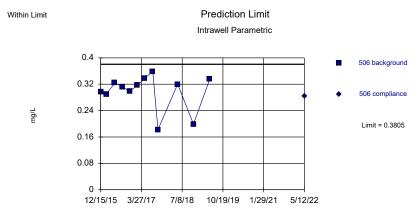
Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG



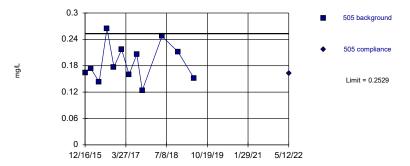
Background Data Summary: Mean=406.3, Std. Dev.=22.23, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8601, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/6/2022 6:14 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	506	506	510	510	512	512	601	601
12/15/2015	475		489		425		387	
2/18/2016	423		446		366		380	
5/25/2016	133		451		467			
5/26/2016							461	
8/23/2016	459		472		422		401	
11/10/2016			468					
11/11/2016	477				443		423	
2/8/2017	451		462		404		396	
5/3/2017			486		436		406	
5/4/2017	462							
8/1/2017			456		414		393	
8/4/2017	480							
10/3/2017	450		485		423		397	
5/17/2018	442		494		419		431	
11/15/2018	426		478		452		397	
5/22/2019	453		480		445		404	
5/12/2022		463		475		548		394
7/15/2022						394 1st Verific	cation	

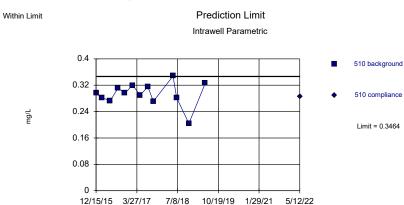

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.1674, Std. Dev.=0.02979, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

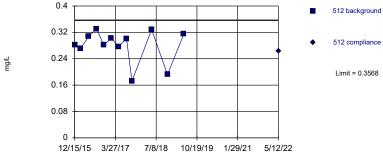
Background Data Summary: Mean=0.2976, Std. Dev_=0.05377, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8104, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1867, Std. Dev.=0.04296, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=0.2934, Std. Dev=0.03503, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					0.296		0.296	
12/16/2015	0.168		0.164					
2/18/2016	0.17		0.174		0.29		0.282	
5/25/2016	0.188		0.143		0.324		0.273	
8/23/2016	0.118		0.265		0.312		0.311	
11/10/2016							0.296	
11/11/2016	0.171		0.177		0.298			
2/8/2017	0.151		0.217		0.317		0.32	
5/3/2017							0.29	
5/4/2017	0.157		0.16		0.338			
8/1/2017	0.189		0.206				0.315	
8/4/2017					0.359			
10/3/2017	0.117		0.124		0.182		0.271	
5/17/2018	0.216		0.247		0.32		0.348	
6/27/2018	0.135						0.282	
11/15/2018	0.208		0.212		0.199		0.204	
1/11/2019	0.179							
5/22/2019	0.176		0.151		0.336		0.326	
5/12/2022		0.168		0.162		0.284		0.285

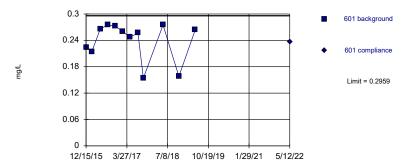
Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.2799, Std. Dev.=0.04987, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8252, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG


Within Limits
Prediction Limit
Intrawell Non-parametric

504 background
504 compliance
Limit = 9.03
Limit = 6.3

12/16/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 20 background values. Well-constituent pair annual alpha = 0.00225. Individual comparison alpha = 0.001125 (1 of 3). Seasonality was not detected with 95% confidence.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.0588, Std. Dev.=0.01866, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8225, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

12/16/15 4/9/17

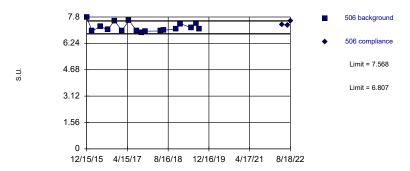
Within Limits

Prediction Limit
Intrawell Non-parametric

505 background

505 compliance
Limit = 9.2
Limit = 6.6

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Seasonality was not detected with 95% confidence.

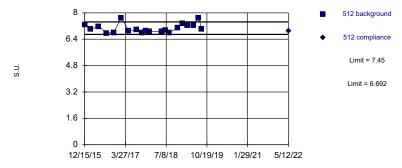

8/3/18 11/26/19 3/21/21 7/15/22

Constituent: Fluoride, pH Analysis Run 9/6/2022 6:14 PM View: LF III Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

	512	512	601	601	504	504	505	505	
12/15/2015	0.281		0.224						
12/16/2015					7.83		7.74		
2/18/2016	0.27		0.214		6.99		6.88		
5/25/2016	0.308				7.66		7.42		
5/26/2016			0.266						
8/23/2016	0.331		0.275		6.74		6.79		
11/11/2016	0.282		0.273		9.03		9.2		
2/8/2017	0.302		0.26		7.09		6.84		
5/3/2017	0.277		0.247						
5/4/2017					6.4		6.8		
8/1/2017	0.301		0.257		6.83		7.44		
10/3/2017	0.172		0.154		6.3		6.98		
11/16/2017					6.45		6.84		
12/28/2017					6.47		6.85		
5/17/2018	0.328		0.275		6.41		6.6		
6/27/2018					6.7		6.82		
8/8/2018					6.62				
11/15/2018	0.192		0.158		7.01		7.09		
1/11/2019					7.15		7.08		
3/12/2019					6.34		6.78		
5/22/2019	0.315		0.264		6.7		6.85		
7/16/2019					7.53				
8/21/2019					6.85				
5/12/2022		0.264		0.237		6.43		6.58	
7/15/2022								7.15	1st Verification

Within Limits

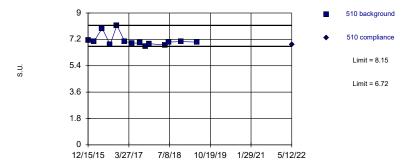
Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=7.188, Std. Dev.=0.2694, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

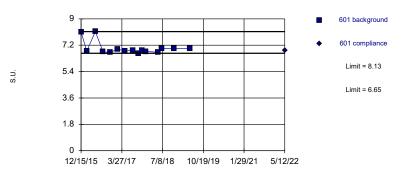
Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG


Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.071, Std. Dev.=0.2785, n=20. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8734, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.006393. Individual comparison alpha = 0.003199 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

			Sibil	by Generaling Stati	OITOVVL CITETIL SC	3 Liigiileeis Dai	a. Sibiey		
	506	506	510	510	512	512	601	601	
12/15/2015	7.78		7.14		7.29		8.11		
2/18/2016	6.97		7.05		7		6.8		
5/25/2016	7.24		7.95		7.18				
5/26/2016							8.13		
8/23/2016	7.04		6.84		6.77		6.75		
11/10/2016			8.15						
11/11/2016	7.58				6.8		6.71		
2/8/2017	7		7.06		7.7		6.93		
5/3/2017			6.94		6.92				
5/4/2017	7.59						6.81		
8/1/2017			6.95		6.97		6.84		
8/4/2017	6.98								
10/3/2017	6.88		6.72		6.79		6.65		
11/16/2017	6.96		6.9		6.92		6.84		
12/28/2017					6.88		6.78		
5/17/2018	6.97		6.82		6.85		6.72		
6/27/2018	7.02		7.01		6.95		6.98		
8/8/2018					6.78				
11/15/2018	7.08		7.05		7.09		6.96		
1/11/2019	7.4				7.34				
3/12/2019					7.23				
5/22/2019	7.16		7.01		7.25		6.97		
7/16/2019	7.43				7.7				
8/21/2019	7.11				7.01				
5/12/2022		7.35		6.83		6.89		6.84	
7/15/2022		7.31 E	xtra Sample						
8/18/2022		7.56 E	extra Sample						

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

12/16/15 4/9/17

Within Limit

Within Limit Prediction Limit

Background Data Summary: Mean=26.58, Std. Dev.=8.293, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit Intrawell Parametric

110

506 background

506 compliance

Limit = 76.83

Background Data Summary: Mean=70.47, Std. Dev.=4.276, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9125, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05182). Report alpha = 0.00188.

Intrawell Parametric

505 background

505 compliance

Limit = 24.65

Prediction Limit

Background Data Summary: Mean=16.9, Std. Dev.=5.117, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8783, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184

8/3/18 11/26/19 3/21/21 7/15/22

Constituent: Sulfate Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Parametric

510 background

510 compliance

Limit = 18.59

12/15/15 3/27/17 7/8/18 10/19/19 1/29/21 5/12/22

Background Data Summary: Mean=15.58, Std. Dev.=1.955, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Sulfate Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

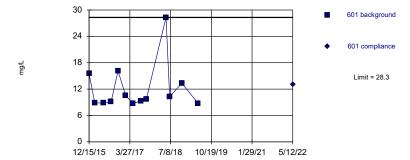
ı	504	504	505	505	506	506	'	510	510
12/15/2015					64.8			14.7	
12/16/2015	14.3		29.2						
2/18/2016	14.7		16		65.6			12	
5/25/2016	18.9		21.9		71			18.1	
8/23/2016	15.4		9.73		65.8			12.7	
11/10/2016								16	
11/11/2016	17.4		15.9		65				
2/8/2017	21		14.9		76.5			16.1	
5/3/2017								15	
5/4/2017	21.8		19.2		69.2				
8/1/2017	23.3		14.4					16.8	
8/4/2017					73.3				
10/3/2017	24.3		13.4		71.3			16.9	
5/17/2018	32.8		14		75.7			17.3	
6/27/2018	31.8								
8/8/2018	32.3								
11/15/2018	33.9		14.6		70.8			17.5	
1/11/2019	33.2		13.8		67.3				
3/12/2019	35.1								
5/22/2019	36.3		22.7		74.2			13.8	
7/16/2019	36.3				76.1				
8/21/2019	35.6								
5/12/2022		29.1		27.2		99			15
7/15/2022				14 1st Verifica	ation	102	1st Verif	cation	
8/18/2022						95.5	2nd Veri	fication	

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Parametric

200
160
512 background
512 compliance
Limit = 44.8


Prediction Limit

Background Data Summary: Mean=32.21, Std. Dev.=9.019, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8926, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 9/6/2022 6:11 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 9/6/2022 6:14 PM View: LF III
Sibley Generating Station UWL Client: SCS Engineers Data: Sibley

512 512 601 12/15/2015 23 15.5 2/18/2016 21 8.87 5/25/2016 23.1 8.85 8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112 7/15/2022 11.7					
12/15/2015 23 15.5 2/18/2016 21 8.87 5/25/2016 23.1 8.85 8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112		1 512	512	1 601	601
2/18/2016 21 8.87 5/25/2016 23.1 8.85 8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	12/15/201		- · · -		
5/25/2016 23.1 5/26/2016 8.85 8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
5/26/2016 8.85 8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112				3.37	
8/23/2016 24.4 9.11 11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112				9 95	
11/11/2016 24 16.1 2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
2/8/2017 27.8 10.5 5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
5/3/2017 27.3 8.71 8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
8/1/2017 28.1 9.33 10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
10/3/2017 28.2 9.76 5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
5/17/2018 29.6 28.3 6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112					
6/27/2018 30.3 10.3 8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	10/3/2017	7 28.2			
8/8/2018 30.9 11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	5/17/2018	8 29.6		28.3	
11/15/2018 51.4 13.3 1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	6/27/2018	8 30.3		10.3	
1/11/2019 43.3 3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	8/8/2018	30.9			
3/12/2019 44.2 5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	11/15/2018	18 51.4		13.3	
5/22/2019 40.1 8.74 7/16/2019 42.1 8/21/2019 41 5/12/2022 112	1/11/2019	9 43.3			
7/16/2019 42.1 8/21/2019 41 5/12/2022 112	3/12/2019	9 44.2			
8/21/2019 41 5/12/2022 112	5/22/2019	9 40.1		8.74	
8/21/2019 41 5/12/2022 112	7/16/2019	9 42.1			
5/12/2022 112					
	5/12/2022	2	112		13.1

		Sibley	Generating Sta	ation UWL	Client: SCS Enginee	ers Data:	Sibley	Print	ed 9/6/2022	2, 6:14 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	<u>Ob</u> :	oserv.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	504	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	505	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	506	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	510	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	512	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	601	0.2	n/a	5/12/2022	0.1	1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Calcium (mg/L)	504	40.91	n/a	5/12/2022	28.	.7	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	505	29.31	n/a	5/12/2022	28.	.9	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	506	102.9	n/a	5/12/2022	89.	.4	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	510	127.2	n/a	5/12/2022	111	1	No	13	0	x^3	0.00188	Param Intra 1 of 3
Calcium (mg/L)	512	111.3	n/a	5/12/2022	111	1	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	601	110.7	n/a	5/12/2022	100	0	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	504	3.91	n/a	5/12/2022	0.5	5ND	No	16	68.75	n/a	0.001026	NP Intra (NDs) 1 of 3
Chloride (mg/L)	505	3.13	n/a	5/12/2022	1.2	2	No	15	46.67	n/a	0.001313	NP Intra (normality)
Chloride (mg/L)	506	7.578	n/a	8/18/2022	12.	.5	Yes	17	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	510	3.762	n/a	5/12/2022	3.3	35	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	512	5.094	n/a	7/15/2022	3.7	71	No	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	601	6.1	n/a	5/12/2022	3.6	64	No	15	0	n/a	0.001313	NP Intra (normality)
Dissolved Solids (mg/l)	504	385	n/a	5/12/2022	171	1	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	505	180.3	n/a	7/15/2022	180	0	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	491.2	n/a	5/12/2022	463	3	No	12	0	x^5	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	510	496.5	n/a	5/12/2022	475	5	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	512	466.4	n/a	7/15/2022	394	4	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	440.6	n/a	5/12/2022	394	4	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	504	0.2116	n/a	5/12/2022	0.1	168	No	14	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	505	0.2529	n/a	5/12/2022	0.1	162	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	506	0.3805	n/a	5/12/2022	0.2	284	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	510	0.3464	n/a	5/12/2022	0.2	285	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	512	0.3568	n/a	5/12/2022	0.2	264	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	601	0.2959	n/a	5/12/2022	0.2	237	No	12	0	x^2	0.00188	Param Intra 1 of 3
pH (S.U.)	504	9.03	6.3	5/12/2022	6.4	43	No	20	0	n/a	0.001125	NP Intra (normality)
pH (S.U.)	505	9.2	6.6	7/15/2022	7.1	15	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	506	7.568	6.807	8/18/2022	7.5	56	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	510	8.15	6.72	5/12/2022	6.8	33	No	14	0	n/a	0.003199	NP Intra (normality)
pH (S.U.)	512	7.45	6.692	5/12/2022	6.8	39	No	20	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	601	8.13	6.65	5/12/2022	6.8	34	No	15	0	n/a	0.002625	NP Intra (normality)
Sulfate (mg/L)	504	38.15	n/a	5/12/2022	29.	.1	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	505	24.65	n/a	7/15/2022	14		No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	506	76.83	n/a	8/18/2022	95.	.5	Yes	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	510	18.59	n/a	5/12/2022	15		No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	512	44.8	n/a	7/15/2022	11.	.7	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	601	28.3	n/a	5/12/2022	13.	.1	No	13	0	n/a	0.001886	NP Intra (normality)

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2022

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
O M	ledian of Ea	ach:	Seasor	1					
Non	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 . 2009
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
	-
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
Use Modified	Alpha 0	.02									
✓ Test Residuals For Normality (Parametric test only) using Shapiro-Wilk/Francia ∨ at Alpha = 0.01 ∨											
Continue	Parametric if U	Inable to Nom	malize								
Never Tran	r of Powers g or No Transfo	mation									
Use Best V	V Statistic										
☐ Plot Transfo	omed Values										
Use Non-Parametric Test (Sen's Slope/Mann-Kendall) when Non-Detects Percent > 75 Include 95. % Confidence Interval around Trend Line Automatically Remove Outliers (Parametric test only)											
Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope / Mann-Kendall (the non-parametric altemative) is available as a report in its own right, under Analysis->Intrawell->Trend.											

Data Output Trend Test Control Cht Prediction Lim 7	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
			sformation - Use Ladder	of Powers				
✓ Test for Normality using Shapiro-Wilk/Francia ∨ a	t Alpha = 0.01	~ O	Natural Log	or No Tran	sformation			
☑ Use Non-Parametric Test when Non-Detects Percent > 50]	0	Never Tran	sform				
Use Aitchison's Adjustment V when Non-Detects Percent >	0	Use Specifi	c Transform Natural					
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50	Use Best W	Statistic				
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es			
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	IntraWell Other ☐ Stop if Background Trend Detected at Alpha = 0.05 ✓ ☐ Plot Background Data Override Standard Deviation:							
Always Use Non-Parametric	Override DF: Override Kappa:							
Facility \(\alpha \) Statistical Evaluations per Year: 2 Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter Lighter 2 Lighter 2 Constituents Analyzed: 3 Show Deselected Data 1 Compliance 2 Constituents Analyzed: 3 Constituents Analyzed: 3 Constituents Analyzed: 4 Compliance Co								
Sampling Plan Comparing Individual Observations 1 of 1								

Data Output Trend Test Control Cht Prediction Lim Tolerance	Lim Conf/Tol Int	ANOVA Welchs	Other Tests							
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney										
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney										
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Outlier Tests										
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)										
Dixon's at α= 0.05 v or if n > 22 v Rosner's at α= 0.01 v Use EPA Screening to establish Suspected Outliers										
○ Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use	Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat									
✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1	~									
Stop if Non-Normal										
Continue with Parametric Test if Non-Normal										
○ Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers t	to achieve Best W Sta	at							
✓ No Outlier If Less Than 3.0 Times Median										
Apply Rules found in Ohio Guidance Document 0715										
Combine Background Wells on the Outlier Report										
Piper, Stiff Diagram Combine Wells	✓ Label Constit	uente								
Combine Vens	Label Axes	aci ito								
Use Default Constituent Names		Anion Balance (Piper	only)							
Use Constituent Definition File Edit		, pa								
O SSC SCHOOLE DOWNLOTT HE LOIL										