

## 2019 – 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

AREA 2 POND, AREA 3 POND, AND AREA 4 POND LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-037 July 2020

#### **Table of Contents**

|    |                               |         |                                                              | Page |  |  |  |
|----|-------------------------------|---------|--------------------------------------------------------------|------|--|--|--|
| 1. | Intro                         | oductio | on                                                           | 1    |  |  |  |
| 2. | 40 CFR § 257.90 Applicability |         |                                                              |      |  |  |  |
|    | 2.1                           | 40 CFF  | R § 257.90(A)                                                | 2    |  |  |  |
|    | 2.2                           | 40 CFF  | R § 257.90(E) – SUMMARY                                      | 2    |  |  |  |
|    |                               | 2.2.1   | Status of the Groundwater Monitoring Program                 | 2    |  |  |  |
|    |                               | 2.2.2   | Key Actions Completed                                        | 3    |  |  |  |
|    |                               | 2.2.3   | Problems Encountered                                         | 3    |  |  |  |
|    |                               | 2.2.4   | Actions to Resolve Problems                                  | 3    |  |  |  |
|    |                               | 2.2.5   | Project Key Activities for Upcoming Year                     | 3    |  |  |  |
|    | 2.3                           | 40 CFF  | R § 257.90(E) – INFORMATION                                  | 4    |  |  |  |
|    |                               | 2.3.1   | 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network | 4    |  |  |  |
|    |                               | 2.3.2   | 40 CFR § 257.90(e)(2) – Monitoring System Changes            | 4    |  |  |  |
|    |                               | 2.3.3   | 40 CFR § 257.90(e)(3) – Summary of Sampling Events           | 4    |  |  |  |
|    |                               | 2.3.4   | 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative      | 4    |  |  |  |
|    |                               | 2.3.5   | 40 CFR § 257.90(e)(5) – Other Requirements                   | 5    |  |  |  |

| Revision No. | Date | Notes |
|--------------|------|-------|
|              |      |       |
|              |      |       |
|              |      |       |
|              |      |       |



#### **List of Tables**

Table No. Title

I Summary of Analytical Results – Detection and Assessment Monitoring

II Summary of Appendix III SSIs

III Annual Assessment Groundwater Monitoring – Detected Appendix IV GWPS

#### **List of Figures**

Figure No. Title

1 Ash Ponds Monitoring Well Location Map



This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Lawrence Energy Center Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, Ash Ponds) consistent with applicable sections of Code of Federal Regulations Title 40 §§ 257.90 through 257.98, and describes activities conducted from July 2019 through June 2020 and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report for the LEC Ash Ponds is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. 881

Title: Technical Expert 2
Company: Haley & Aldrich, Inc.

#### 1. Introduction

This 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, Ash Ponds) at the Lawrence Energy Center (LEC), operated by Evergy Kansas Central, Inc. (Evergy; f/k/a/ Westar Energy, Inc.). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (Rule) effective 19 October 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection § 257.90(e). Evergy prepared and placed in the facility's operating record a notification of intent to initiate closure of the Ash Ponds by 17 December 2015. Due to the USEPA Extension of Compliance Deadlines for Certain Inactive Surface Impoundments, Response to Partial Vacatur effective 4 October 2016, in accordance with the requirement under § 257.100(e)(1), the alternative reporting timeframes specified in § 257.100(e)(2) through (6) are applicable for the Ash Ponds.

This Annual Report documents the groundwater monitoring system for the Ash Ponds consistent with applicable sections of §§ 257.90 through 257.98, and describes activities conducted between July 2019 and June 2020 and documents compliance with the Rule. The specific requirements listed in § 257.90(e)(1) through (5) of the Rule are provided in Section 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.



#### 2. 40 CFR § 257.90 Applicability

#### 2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.98, except as provided in paragraph (g) of this section.

Evergy has installed and certified a multi-unit groundwater monitoring system at the LEC Ash Ponds. The Ash Ponds are subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

#### 2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

#### 40 CFR 257.100(e)(5)(ii)

No later than August 1, 2019, prepare the initial groundwater monitoring and corrective action report as set forth in § 257.90(e.)

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the LEC Ash Ponds as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed from July 2019 through June 2020.

#### 2.2.1 Status of the Groundwater Monitoring Program

The Ash Ponds were in the detection monitoring program through September 2019. The first annual assessment monitoring event occurred in December 2019 with laboratory analyses completed in January 2020, thus establishing an assessment monitoring program. The Ash Ponds have remained in the assessment monitoring program through June 2020.



#### 2.2.2 Key Actions Completed

The 2018 – 2019 Annual Groundwater Monitoring and Corrective Action Report was completed in July 2019 for the time period through June 2019. Statistical evaluation was completed in July 2019 on analytical data from the March 2019 detection monitoring sampling event and statistically significant increases (SSI) over background concentrations were identified. An alternative source demonstration (ASD) was not successfully completed within 90 days for the March 2019 detection monitoring sampling event.

A semi-annual detection monitoring sampling event was completed in September 2019 for Appendix III constituents while the ASD was being pursued. Since the ASD was not successfully completed for the March 2019 detection monitoring sampling event, statistical evaluation was not completed on analytical data from the September 2019 detection monitoring sampling event.

The initial annual assessment monitoring sampling event was completed in December 2019, with laboratory analyses completed in January 2020, thus establishing an assessment monitoring program. This sampling event identified detected Appendix IV constituents for subsequent semi-annual sampling events in March and September 2020. Groundwater protection standards for detected Appendix IV constituents were established at that time. Semi-annual assessment monitoring sampling was completed in March 2020 for detected Appendix IV constituents identified during the December 2019 annual monitoring event. Statistical evaluation of the results from the March 2020 semi-annual assessment monitoring sampling event are due to be completed in July 2020 and will be reported in the next annual report.

#### 2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, or problems with analytical analysis) were encountered at the Ash Ponds from July 2019 through June 2020.

#### 2.2.4 Actions to Resolve Problems

No problems were encountered at the Ash Ponds from July 2019 through June 2020; therefore, no actions to resolve the problems were required.

#### 2.2.5 Project Key Activities for Upcoming Year

Key activities planned for July 2020 through June 2021 include the 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report, statistical analysis of assessment monitoring analytical data collected in March 2020, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.



#### 2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

#### 2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the LEC Ash Ponds is included in this report as Figure 1.

#### 2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned from July 2019 to June 2020.

#### 2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b), one independent detection monitoring sample was collected from each background and downgradient monitoring well in September 2019. Two independent assessment monitoring samples were collected from each background and downgradient well in December 2019 (Appendix IV constituents only) and March 2020. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the Ash Ponds is presented in Table I of this report.

#### 2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

Detection monitoring was conducted in accordance with § 257.94(b) through September 2019. SSIs identified during the March 2019 detection monitoring sampling event are provided in Table II. The initial annual assessment monitoring sampling event was completed in December 2019 in accordance with § 257.95(b) with laboratory results completed in January 2020, thus establishing an assessment monitoring program. Assessment monitoring samples from March 2020 were collected in accordance with § 257.95(d)(1).



#### 2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed from July 2019 through June 2020.

#### 2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

#### 2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

An ASD was not successfully completed for the March 2019 detection monitoring sampling event.



#### 2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

## 2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

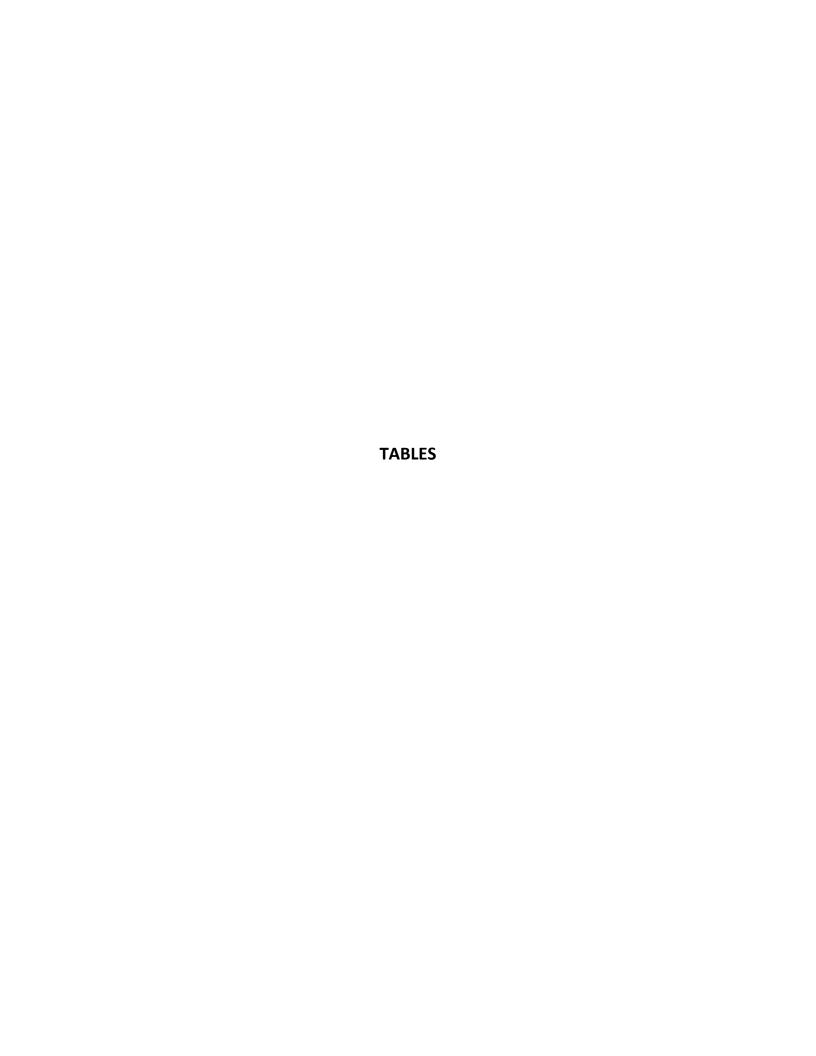
Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since December 2019. One round of assessment monitoring sampling was completed between July 2019 and June 2020. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the Ash Ponds are included in Table III. The background concentrations and groundwater protection standards provided in Table III will be utilized for the statistical evaluations completed for the March 2020 semi-annual assessment monitoring sampling event.

#### 2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring ASD or certification was required prior to July 2020.




## 2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated from July 2019 through June 2020; therefore, no demonstration or certification is applicable for this unit.





#### **TABLE I**

#### SUMMARY OF ANALYTICAL RESULTS - DETECTION AND ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER ASH PONDS

ST. MARYS, KANSAS

| Location                                 |            | Upgradient               |                       |            |                       |                       |            |                        |                         |                       |                       | Downgradient |                         |                       |            |                      |                      |            |                       |                       |
|------------------------------------------|------------|--------------------------|-----------------------|------------|-----------------------|-----------------------|------------|------------------------|-------------------------|-----------------------|-----------------------|--------------|-------------------------|-----------------------|------------|----------------------|----------------------|------------|-----------------------|-----------------------|
| Location                                 |            | MW-37                    |                       |            | MW-38                 |                       |            |                        | MW-39                   |                       |                       |              | MW-40                   |                       |            | MW-K                 |                      |            | MW-L                  |                       |
| Measure Point (TOC)                      |            | 833.290                  |                       |            | 832.626               |                       |            |                        | 830.615                 |                       |                       |              | 831.358                 |                       |            | 842.6                |                      |            | 843.05                |                       |
| Sample Name                              | MW-37      | MW-37-120619             | MW-37-031020          | MW-38      | MW-38-120619          | MW-38-031020          | MW-39      | MW-39-120619           | DUP-120619              | MW-39-031120          | DUP-031120            | MW-40        | MW-40-120619            | MW-40-031120          | MW-K       | MW-K_120619          | MW-K-031120          | MW-L       | MW-L_120619           | MW-L-031120           |
| Sample Date                              | 9/4/2019   | 12/6/2019                | 3/10/2020             | 9/4/2019   | 12/6/2019             | 3/10/2020             | 9/4/2019   | 12/0619                | 12/0619                 | 3/11/2020             | 3/11/2020             | 9/4/2019     | 12/6/2019               | 3/11/2020             | 9/5/2019   | 12/06/2019           | 03/11/2020           | 9/5/2019   | 12/06/2019            | 03/11/2020            |
| Final Lab Report Date                    | 9/16/2019  | 12/18/2019               | 3/20/2020             | 9/16/2019  | 12/18/2019            | 3/20/2020             | 9/16/2019  | 12/18/2019             | 12/18/2019              | 3/20/2020             | 3/20/2020             | 9/16/2019    | 12/18/2019              | 3/20/2020             | 9/16/2019  | 12/18/2019           | 3/20/2020            | 9/16/2019  | 12/18/2019            | 3/20/2020             |
| Final Lab Report Revision Date           | N/A        | N/A                      | 3/31/2020             | N/A        | N/A                   | 3/31/2020             | N/A        | N/A                    | N/A                     | 3/31/2020             | 3/31/2020             | N/A          | N/A                     | 3/31/2020             | N/A        | N/A                  | 3/31/2020            | N/A        | N/A                   | 3/31/2020             |
| Final Radiation Lab Report Date          | N/A        | 1/2/2020                 | 4/2/2020              | N/A        | 1/2/2020              | 4/2/2020              | N/A        | 1/2/2020               | 1/2/2020                | 4/2/2020              | 4/2/2020              | N/A          | 1/2/2020                | 4/2/2020              | N/A        | 1/2/2020             | 4/2/2020             | N/A        | 1/2/2020              | 4/2/2020              |
| Final Radiation Lab Report Revision Date | N/A        | N/A                      | N/A                   | N/A        | N/A                   | N/A                   | N/A        | N/A                    | N/A                     | N/A                   | N/A                   | N/A          | N/A                     | N/A                   | N/A        | N/A                  | N/A                  | N/A        | N/A                   | N/A                   |
| Lab Data Reviewed and Accepted           | 10/21/2019 | 1/9/2020                 | 4/18/2020             | 10/21/2019 | 1/9/2020              | 4/18/2020             | 10/21/2019 | 1/9/2020               | 1/9/2020                | 4/18/2020             | 4/18/2020             | 10/21/2019   | 1/9/2020                | 4/18/2020             | 10/21/2019 | 1/9/2020             | 4/18/2020            | 10/21/2019 | 1/9/2020              | 4/18/2020             |
| Depth to Water (ft btoc)                 | 6.55       | 9.61                     | 6.79                  | 10.65      | 14.04                 | 14.93                 | 8.84       | 11.49                  | -                       | 13.70                 | -                     | 9.38         | 11.96                   | 14.38                 | 20.76      | 24.24                | 25.12                | 23.03      | 24.24                 | 25.81                 |
| Temperature (Deg C)                      | 15.88      | 13.26                    | 8.83                  | 16.41      | 14.49                 | 10.59                 | 17.45      | 14.83                  | -                       | 10.34                 | -                     | 18.08        | 14.92                   | 11.79                 | 17.85      | 14.72                | 10.17                | 19.27      | 14.76                 | 10.38                 |
| Conductivity (µS/cm)                     | 836        | 1073                     | 929                   | 2352       | 2834                  | 2476                  | 3255       | 3009                   | -                       | 3217                  | -                     | 2958         | 2686                    | 2693                  | 5,467      | 4793                 | 4708                 | 4,396      | 3800                  | 3790                  |
| Turbidity (NTU)                          | 2.95       | 1.61                     | 5.22                  | 0.62       | 0.96                  | 0.44                  | 0.52       | 0.92                   | -                       | 0.61                  | -                     | 0.73         | 2.68                    | 0.32                  | 7.88       | 1.06                 | 0.66                 | 0.97       | 0.71                  | 0.51                  |
| Boron, Total (mg/L)                      | 1.75       | -                        | 2.0                   | 4.70       | -                     | 5.39                  | 4.46       | -                      | -                       | 5.0                   | 4.76                  | 5.45         | -                       | 4.93                  | 1.73       |                      | 1.8                  | 2.26       |                       | 2.6                   |
| Calcium, Total (mg/L)                    | 134        | -                        | 172                   | 292        | -                     | 336                   | 464        | -                      | -                       | 576                   | 577                   | 488          | -                       | 464                   | 568        |                      | 562                  | 545        |                       | 551                   |
| Chloride (mg/L)                          | 33.6       | -                        | 40.6                  | 201        | -                     | 249                   | 334        | -                      | -                       | 317                   | 351                   | 309          | -                       | 289                   | 942        |                      | 944                  | 624        |                       | 633                   |
| Fluoride (mg/L)                          | 0.35       | 0.27                     | 0.27                  | 2.0        | 5.0                   | 4.9                   | <0.20      | 2.9                    | 2.9                     | 2.2                   | 2.2                   | <0.20        | 1.6                     | 1.6                   | 3.7        | 2.9                  | 2.7                  | <0.20      | 2.0                   | 2.4                   |
| Sulfate (mg/L)                           | 287        | -                        | 319                   | 1220       | -                     | 1290                  | 1780       | -                      | -                       | 1730                  | 1720                  | 1650         | -                       | 1490                  | 2350       |                      | 2190                 | 1880       |                       | 1880                  |
| pH (su)                                  | 7.2        | -                        | 7.0                   | 7.4        | -                     | 7.6                   | 7.2        | -                      | -                       | 7.2                   | 7.3                   | 7.2          | -                       | 7.2                   | 7.2        |                      | 7.3                  | 7.1        |                       | 7.3                   |
| TDS (mg/L)                               | 775        | -                        | 853                   | 2440       | -                     | 2460                  | 3480       | -                      | -                       | 3370                  | 3450                  | 3160         | -                       | 3090                  | 5490       |                      | 5020                 | 4180       |                       | 3880                  |
| Antimony, Total (mg/L)                   | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                 | -                     | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Arsenic (mg/L)                           | -          | 0.0078                   | 0.0065                | -          | 0.015                 | 0.015                 | -          | 0.014                  | 0.014                   | 0.0112                | 0.0112                | -            | 0.015                   | 0.014                 |            | 0.076                | 0.067                |            | 0.029                 | 0.024                 |
| Barium, Total (mg/L)                     | -          | 0.061                    | 0.065                 | -          | 0.031                 | 0.0334                | -          | 0.030                  | 0.031                   | 0.0338                | 0.0332                | -            | 0.031                   | 0.0321                |            | 0.040                | 0.043                |            | 0.037                 | 0.035                 |
| Beryllium, Total (mg/L)                  | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                 | -                     | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Cadmium, Total (mg/L)                    | -          | <0.00050                 | -                     | -          | <0.00050              | -                     | -          | <0.00050               | <0.00050                | -                     | -                     | -            | <0.00050                | -                     |            | < 0.00050            |                      |            | < 0.00050             |                       |
| Chromium, Total (mg/L)                   | -          | <0.0050                  | -                     | -          | <0.0050               | -                     | -          | <0.0050                | <0.0050                 | -                     | -                     | -            | <0.0050                 | -                     |            | < 0.0050             |                      |            | < 0.0050              |                       |
| Cobalt, Total (mg/L)                     | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                 | -                     | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Lead, Total (mg/L)                       | -          | <0.010                   | -                     | -          | <0.010                | -                     | -          | <0.010                 | <0.010                  | -                     | -                     | -            | <0.010                  | -                     |            | < 0.010              |                      |            | < 0.010               |                       |
| Lithium, Total (mg/L)                    | -          | 0.017                    | 0.0180                | -          | 0.075                 | 0.0744                | -          | 0.045                  | 0.042                   | 0.038                 | 0.0369                | -            | 0.045                   | 0.0415                |            | 0.089                | 0.077                |            | 0.057                 | 0.057                 |
| Molybdenum, Total (mg/L)                 | -          | 0.14                     | 0.12                  | -          | 0.092                 | 0.0822                | -          | 0.19                   | 0.19                    | 0.179                 | 0.180                 | -            | 0.11                    | 0.0959                |            | 0.0096               | 0.016                |            | 0.055                 | 0.049                 |
| Selenium, Total (mg/L)                   | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                 | -                     | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Thallium, Total (mg/L)                   | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                 | -                     | -                     | -            | <0.0010                 | -                     |            | < 0.0050             |                      |            | < 0.0050              |                       |
| Mercury, Total (mg/L)                    | -          | <0.00020                 | -                     | -          | <0.00020              | -                     | -          | <0.00020               | <0.00020                | -                     | -                     | -            | <0.00020                | -                     |            | < 0.00020            |                      |            | < 0.00020             |                       |
| Fluoride (mg/L)                          | -          | 0.27                     | 0.27                  | -          | 5.0                   | 4.9                   | -          | 2.9                    | 2.9                     | 2.2                   | 2.2                   | -            | 1.6                     | 1.6                   |            | 2.9                  | 2.7                  |            | 2.0                   | 2.4                   |
| Radium-226 & 228 Combined (pCi/L)        | -          | 0.0414 +/- 0.563 (0.967) | 0.291 ± 0.430 (0.710) | -          | 1.84 +/- 0.756 (1.08) | 0.245 ± 0.440 (0.721) | -          | 0.760 +/- 0.619 (1.01) | 0.000 +/- 0.461 (0.943) | 0.484 ± 0.547 (0.860) | 0.116 ± 0.444 (0.706) | -            | 0.912 +/- 0.613 (0.929) | 0.553 ± 0.488 (0.651) |            | 0.547 ± 0.663 (1.12) | 1.21 ± 0.534 (0.642) |            | 0.482 ± 0.632 (0.980) | 0.939 ± 0.500 (0.679) |

The September 2019 sampling event was for Appendix III constituents only. The March 2020 sampling event included Appendix IV constituents detected in the December 2019 sampling event, and all of the Appendix III constituents.

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC).

Bold value: Detection above laboratory reporting limit or MDC.

μS/cm = micro Siemens per centimeter ft btoc = feet below top of casing

Deg C = degrees Celsius mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

TOC = top of casing



# TABLE II SUMMARY OF APPENDIX III SSIS MARCH 2019 SAMPLING EVENT LAWRENCE ENERGY CENTER ASH PONDS

| Well ID | Statistical Analysis Completed | Constituent            |
|---------|--------------------------------|------------------------|
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      | Boron                  |
| MW-40   | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Calcium                |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Chloride               |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Fluoride               |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Sulfate                |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-K    | July 2019                      | Total Dissolved Solids |
| MW-L    | July 2019                      |                        |

#### Notes & Abbreviations:

 $SSIs = statistically\ significant\ increases$ 



#### **TABLE III**

#### ANNUAL ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS

DECEMBER 2019 SAMPLING EVENT LAWRENCE ENERGY CENTER ASH PONDS

| Well #             | Background Value (UTL)*          | GWPS<br>(Higher of MCL / 40 CFR § 257.95(h)(2) or<br>Upper Tolerance Limit) |
|--------------------|----------------------------------|-----------------------------------------------------------------------------|
|                    | CCR Appendix-IV Arsenic, To      | tal (mg/L)                                                                  |
| MW-37 (upgradient) | 0.00940                          |                                                                             |
| MW-38              |                                  | 0.010                                                                       |
| MW-39              |                                  | 0.010                                                                       |
| MW-40              |                                  | 0.010                                                                       |
| MW-K               |                                  | 0.010                                                                       |
| MW-L               |                                  | 0.010                                                                       |
|                    | CCR Appendix-IV Barium, To       | tal (mg/L)                                                                  |
| MW-37 (upgradient) | 0.0601                           |                                                                             |
| MW-38              |                                  | 2                                                                           |
| MW-39              |                                  | 2                                                                           |
| MW-40              |                                  | 2                                                                           |
| MW-K               |                                  | 2                                                                           |
| MW-L               |                                  | 2                                                                           |
|                    | CCR Appendix-IV Fluoride, To     | tal (mg/L)                                                                  |
| MW-37 (upgradient) | 0.455                            |                                                                             |
| MW-38              |                                  | 4.0                                                                         |
| MW-39              |                                  | 4.0                                                                         |
| MW-40              |                                  | 4.0                                                                         |
| MW-K               |                                  | 4.0                                                                         |
| MW-L               |                                  | 4.0                                                                         |
|                    | CCR Appendix-IV Lithium, To      | tal (mg/L)                                                                  |
| MW-37 (upgradient) | 0.0207                           |                                                                             |
| MW-38              |                                  | 0.040                                                                       |
| MW-39              |                                  | 0.040                                                                       |
| MW-40              |                                  | 0.040                                                                       |
| MW-K               |                                  | 0.040                                                                       |
| MW-L               |                                  | 0.040                                                                       |
|                    | CCR Appendix-IV Molybdenum,      | Total (mg/L)                                                                |
| MW-37 (upgradient) | 0.140                            |                                                                             |
| MW-38              | -                                | 0.140                                                                       |
| MW-39              |                                  | 0.140                                                                       |
| MW-40              |                                  | 0.140                                                                       |
| MW-K               |                                  | 0.140                                                                       |
| MW-L               |                                  | 0.140                                                                       |
|                    | CCR Appendix-IV Radium-226 & 228 | Combined (pCi/L)                                                            |
| MW-37 (upgradient) | 2.215                            |                                                                             |
| MW-38              |                                  | 5                                                                           |
| MW-39              |                                  | 5                                                                           |
| MW-40              |                                  | 5                                                                           |
| MW-K               |                                  | 5                                                                           |
| MW-L               |                                  | 5                                                                           |

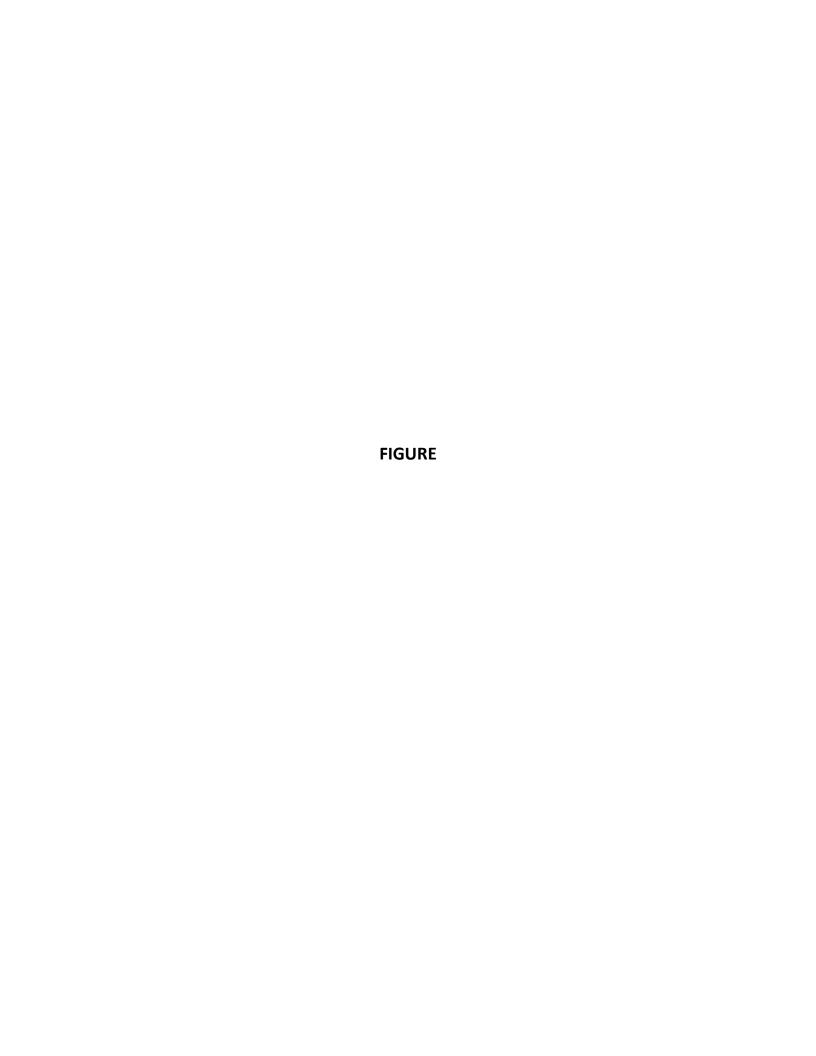
#### Notes and Abbreviations:

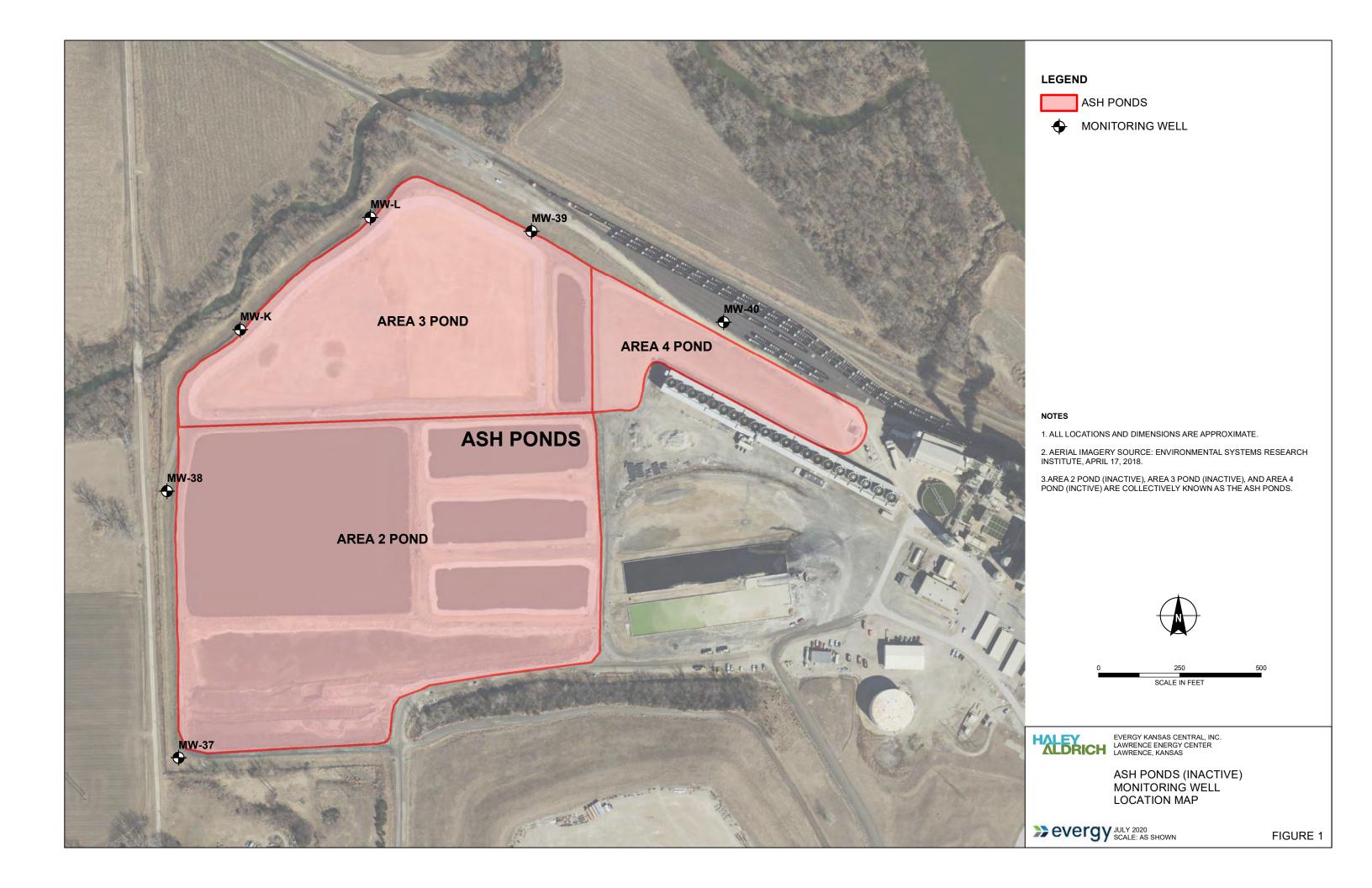
 $^{*}$  Background value for interwell evaluation based on data collected through March 2019

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

 $MCL = maximum\ contaminant\ level$ 


mg/L = milligrams per Liter


NA = Not Applicable

pCi/L = picoCuries per Liter

RSL = Regional Screening Level









HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

November 2, 2022 Project No. 0204993-000

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report Addendum

Evergy Kansas Central, Inc.

Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)

Lawrence Energy Center – Lawrence, Kansas

The Evergy Kansas Central, Inc. (Evergy) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds) at the Lawrence Energy Center is subject to the groundwater monitoring and corrective action requirements described under Code of Federal Regulations Title 40 (40 CFR) §257.90 through §257.98 (Rule). An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting the activities completed from July 2019 – June 2020 for the inactive Ash Ponds was completed and placed in the facility's operating record on July 31, 2020, as required by the Rule. The Annual GWMCA Report contained the specific information listed in 40 CFR §257.90(e).

This report addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR §257.90(e), the USEPA indicated in their comments that the GWMCA Report should contain:

- Results of laboratory analysis of groundwater or other environmental media samples for the
  presence of constituents of Appendices III and IV to 40 CFR Part 257 (or of other constituents,
  such as those supporting characterization of site conditions that may ultimately affect a
  remedy);
- Required statistical analyses performed on those (laboratory analysis) results;
- Measured groundwater elevations; and
- Calculated groundwater flow rate and direction.

While this information is not specifically referred to in 40 CFR §257.90(e) for inclusion in the GWMCA Report, it has been routinely collected and maintained in Evergy's files and is being provided in the attachments to this addendum. The applicable laboratory analysis reports for sampling events completed from July 2019 through June 2020 are included in Attachment 1, and a discussion of the applicable statistical analyses completed from July 2019 through June 2020 are included in

Evergy Kansas Central, Inc. November 2, 2022 Page 2

Attachment 2 of this addendum. For each of the sampling events completed from July 2019 through June 2020, the measured groundwater elevations, with calculated groundwater flow rates and directions, have been included in Attachment 3.

The Attachments to this addendum are described below:

- Attachment 1 Laboratory Analytical Reports: Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the sampling events completed from July 2019 through June 2020 are provided.
- Attachment 2 Statistical Analyses: Includes a discussion of the statistical analyses utilized along
  with a table summarizing the statistical outputs (e.g., frequency of detection, maximum
  detection, variance, standard deviation, coefficient of variance, outlier tests, trends, upper and
  lower confidence limits, and comparison against Groundwater Protection Standards), and
  supporting backup for statistical analyses completed from July 2019 through June 2020
  included:
  - Overview of the July 2019 statistical analysis for data obtained in the March 2019 sampling event; and
  - Explanation of statistical analysis related to the September 2019 sampling event.
- Attachment 3 Groundwater Potentiometric Maps: Includes the measured groundwater elevations at each well and the generalized groundwater flow direction and calculated flow rate. Maps for the sampling events completed in September and December 2019 and March 2020 are provided.



# ATTACHMENT 1 Laboratory Analytical Reports

ATTACHMENT 1-1
September 2019 Sampling Event
Laboratory Analytical Report



September 16, 2019

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

RE: Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

#### Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Matter M. Wilson

heather.wilson@pacelabs.com

1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company HEATH HORYNA, WESTAR ENERGY JARED MORRISON, WESTAR ENERGY Danielle Zinmaster, Haley & Aldrich







#### **CERTIFICATIONS**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

**Kansas Certification IDs** 

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0

Arkansas Drinking Water

Illinois Certification #: 004455

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET

Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070



#### **SAMPLE SUMMARY**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 60314116001 | MW-40     | Water  | 09/04/19 14:59 | 09/06/19 15:20 |
| 60314116002 | MW-39     | Water  | 09/04/19 13:47 | 09/06/19 15:20 |
| 60314116003 | MW-38     | Water  | 09/04/19 16:16 | 09/06/19 15:20 |
| 60314116004 | MW-37     | Water  | 09/04/19 18:04 | 09/06/19 15:20 |
| 60314116005 | MW-K      | Water  | 09/05/19 12:55 | 09/06/19 15:20 |
| 60314116006 | MW-L      | Water  | 09/05/19 14:13 | 09/06/19 15:20 |



#### **SAMPLE ANALYTE COUNT**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Lab ID      | Sample ID | Method      | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|-------------|----------|----------------------|------------|
| 60314116001 | MW-40     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116002 | MW-39     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116003 | MW-38     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116004 | MW-37     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MGS, MJK | 3                    | PASI-K     |
| 60314116005 | MW-K      | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MGS, MJK | 3                    | PASI-K     |
| 60314116006 | MW-L      | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| Sample: MW-40                                          | Lab ID: 603          | 314116001            | Collected: 09/04/  | 19 14:59        | Received: 09                     | /06/19 15:20 N                                     | Matrix: Water |      |
|--------------------------------------------------------|----------------------|----------------------|--------------------|-----------------|----------------------------------|----------------------------------------------------|---------------|------|
| Parameters                                             | Results              | Units                | Report Limit       | DF              | Prepared                         | Analyzed                                           | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met       | hod: EPA 200         | .7 Preparation Me  | thod: EF        | PA 200.7                         |                                                    |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 5450<br>488000       | ug/L<br>ug/L         | 100<br>200         | 1<br>1          | 09/10/19 16:39<br>09/10/19 16:39 | 09/11/19 10:57<br>09/11/19 10:57                   |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met       | hod: SM 2540         | С                  |                 |                                  |                                                    |               |      |
| Total Dissolved Solids                                 | 3160                 | mg/L                 | 40.0               | 1               |                                  | 09/10/19 13:02                                     |               |      |
| 4500H+ pH, Electrometric                               | Analytical Met       | hod: SM 4500         | -H+B               |                 |                                  |                                                    |               |      |
| pH at 25 Degrees C                                     | 7.2                  | Std. Units           | 0.10               | 1               |                                  | 09/10/19 10:26                                     |               | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met       | hod: EPA 300.        | .0                 |                 |                                  |                                                    |               |      |
| Chloride<br>Fluoride<br>Sulfate                        | 309<br><0.20<br>1650 | mg/L<br>mg/L<br>mg/L | 100<br>0.20<br>100 | 100<br>1<br>100 |                                  | 09/11/19 19:13<br>09/11/19 17:14<br>09/11/19 19:13 | 16984-48-8    | M1   |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| Sample: MW-39                                          | Lab ID: 603          | 314116002            | Collected: 09/04/1  | 19 13:47        | Received: 09                     | )/06/19 15:20 I                                    | Matrix: Water |      |
|--------------------------------------------------------|----------------------|----------------------|---------------------|-----------------|----------------------------------|----------------------------------------------------|---------------|------|
| Parameters                                             | Results              | Units                | Report Limit        | DF              | Prepared                         | Analyzed                                           | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met       | thod: EPA 20         | 0.7 Preparation Met | thod: EF        | PA 200.7                         |                                                    |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 4460<br>464000       | ug/L<br>ug/L         | 100<br>200          | 1<br>1          | 09/10/19 16:39<br>09/10/19 16:39 | 09/11/19 10:59<br>09/11/19 10:59                   |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met       | thod: SM 254         | 0C                  |                 |                                  |                                                    |               |      |
| Total Dissolved Solids                                 | 3480                 | mg/L                 | 66.7                | 1               |                                  | 09/10/19 13:03                                     | 3             |      |
| 4500H+ pH, Electrometric                               | Analytical Met       | thod: SM 450         | 0-H+B               |                 |                                  |                                                    |               |      |
| pH at 25 Degrees C                                     | 7.2                  | Std. Units           | 0.10                | 1               |                                  | 09/10/19 10:27                                     | ,             | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met       | thod: EPA 30         | 0.0                 |                 |                                  |                                                    |               |      |
| Chloride<br>Fluoride<br>Sulfate                        | 334<br><0.20<br>1780 | mg/L<br>mg/L<br>mg/L | 100<br>0.20<br>100  | 100<br>1<br>100 |                                  | 09/11/19 20:27<br>09/11/19 19:57<br>09/11/19 20:27 | 16984-48-8    |      |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| Sample: MW-38                                          | Lab ID: 603        | 314116003            | Collected: 09/04/1  | 19 16:16       | Received: 09                     | 0/06/19 15:20                                      | Matrix: Water |      |
|--------------------------------------------------------|--------------------|----------------------|---------------------|----------------|----------------------------------|----------------------------------------------------|---------------|------|
| Parameters                                             | Results            | Units                | Report Limit        | DF             | Prepared                         | Analyzed                                           | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met     | hod: EPA 20          | 0.7 Preparation Met | thod: EP       | A 200.7                          |                                                    |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 4700<br>292000     | ug/L<br>ug/L         | 100<br>200          | 1<br>1         | 09/10/19 16:39<br>09/10/19 16:39 |                                                    |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met     | hod: SM 254          | 0C                  |                |                                  |                                                    |               |      |
| Total Dissolved Solids                                 | 2440               | mg/L                 | 40.0                | 1              |                                  | 09/10/19 13:03                                     | 3             |      |
| 4500H+ pH, Electrometric                               | Analytical Met     | hod: SM 450          | 0-H+B               |                |                                  |                                                    |               |      |
| pH at 25 Degrees C                                     | 7.4                | Std. Units           | 0.10                | 1              |                                  | 09/10/19 10:29                                     | )             | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met     | hod: EPA 30          | 0.0                 |                |                                  |                                                    |               |      |
| Chloride<br>Fluoride<br>Sulfate                        | 201<br>2.0<br>1220 | mg/L<br>mg/L<br>mg/L | 20.0<br>0.20<br>100 | 20<br>1<br>100 |                                  | 09/11/19 20:57<br>09/11/19 20:42<br>09/11/19 21:12 | 16984-48-8    |      |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| . 400                                                  |                     |                      |                     |              |                                  |                                                  |               |      |
|--------------------------------------------------------|---------------------|----------------------|---------------------|--------------|----------------------------------|--------------------------------------------------|---------------|------|
| Sample: MW-37                                          | Lab ID: 603         | 14116004             | Collected: 09/04/1  | 19 18:04     | Received: 09                     | )/06/19 15:20                                    | Matrix: Water |      |
| Parameters                                             | Results             | Units                | Report Limit        | DF           | Prepared                         | Analyzed                                         | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met      | hod: EPA 200         | 0.7 Preparation Me  | thod: EP     | A 200.7                          |                                                  |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 1750<br>134000      | ug/L<br>ug/L         | 100<br>200          | 1<br>1       | 09/10/19 16:39<br>09/10/19 16:39 |                                                  |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met      | hod: SM 254          | 0C                  |              |                                  |                                                  |               |      |
| Total Dissolved Solids                                 | 775                 | mg/L                 | 10.0                | 1            |                                  | 09/10/19 13:0                                    | 3             |      |
| 4500H+ pH, Electrometric                               | Analytical Met      | hod: SM 450          | 0-H+B               |              |                                  |                                                  |               |      |
| oH at 25 Degrees C                                     | 7.2                 | Std. Units           | 0.10                | 1            |                                  | 09/10/19 10:3                                    | 0             | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met      | hod: EPA 300         | 0.0                 |              |                                  |                                                  |               |      |
| Chloride<br>Fluoride<br>Sulfate                        | 33.6<br>0.35<br>287 | mg/L<br>mg/L<br>mg/L | 5.0<br>0.20<br>20.0 | 5<br>1<br>20 |                                  | 09/12/19 14:0<br>09/11/19 21:50<br>09/11/19 22:1 | 6 16984-48-8  |      |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| Sample: MW-K                                           | Lab ID: 603                                                | 314116005            | Collected: 09/05/  | 19 12:55        | Received: 09                     | /06/19 15:20 N                                     | Matrix: Water |      |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------|----------------------|--------------------|-----------------|----------------------------------|----------------------------------------------------|---------------|------|--|--|--|
| Parameters                                             | Results                                                    | Units                | Report Limit       | DF              | Prepared                         | Analyzed                                           | CAS No.       | Qual |  |  |  |
| 200.7 Metals, Total                                    | Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 |                      |                    |                 |                                  |                                                    |               |      |  |  |  |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 1730<br>568000                                             | ug/L<br>ug/L         | 100<br>200         | 1<br>1          | 09/10/19 16:39<br>09/10/19 16:39 |                                                    |               |      |  |  |  |
| 2540C Total Dissolved Solids                           | Analytical Method: SM 2540C                                |                      |                    |                 |                                  |                                                    |               |      |  |  |  |
| Total Dissolved Solids                                 | 5490                                                       | mg/L                 | 100                | 1               |                                  | 09/11/19 13:39                                     |               |      |  |  |  |
| 4500H+ pH, Electrometric                               | Analytical Met                                             | thod: SM 450         | 0-H+B              |                 |                                  |                                                    |               |      |  |  |  |
| pH at 25 Degrees C                                     | 7.2                                                        | Std. Units           | 0.10               | 1               |                                  | 09/10/19 10:32                                     |               | H6   |  |  |  |
| 300.0 IC Anions 28 Days                                | Analytical Met                                             | thod: EPA 30         | 0.0                |                 |                                  |                                                    |               |      |  |  |  |
| Chloride<br>Fluoride<br>Sulfate                        | 942<br>3.7<br>2350                                         | mg/L<br>mg/L<br>mg/L | 100<br>0.20<br>200 | 100<br>1<br>200 |                                  | 09/11/19 23:11<br>09/11/19 22:41<br>09/12/19 14:55 |               |      |  |  |  |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| . 400 : 10,001 : 1011                                  |                              |                      |                    |                 |                                  |                                                    |               |      |  |
|--------------------------------------------------------|------------------------------|----------------------|--------------------|-----------------|----------------------------------|----------------------------------------------------|---------------|------|--|
| Sample: MW-L                                           | Lab ID: 603                  | 314116006            | Collected: 09/05/  | 19 14:13        | Received: 09                     | 9/06/19 15:20                                      | Matrix: Water |      |  |
| Parameters                                             | Results                      | Units                | Report Limit       | DF              | Prepared                         | Analyzed                                           | CAS No.       | Qual |  |
| 200.7 Metals, Total                                    | Analytical Met               | hod: EPA 200         | 0.7 Preparation Me | thod: EP        | A 200.7                          |                                                    |               |      |  |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 2260<br>545000               | ug/L<br>ug/L         | 100<br>200         | 1<br>1          | 09/10/19 16:39<br>09/10/19 16:39 |                                                    |               | M1   |  |
| 2540C Total Dissolved Solids                           | Analytical Met               | hod: SM 254          | 0C                 |                 |                                  |                                                    |               |      |  |
| Total Dissolved Solids                                 | 4180                         | mg/L                 | 66.7               | 1               |                                  | 09/11/19 13:40                                     | )             |      |  |
| 4500H+ pH, Electrometric                               | Analytical Met               | hod: SM 450          | 0-H+B              |                 |                                  |                                                    |               |      |  |
| oH at 25 Degrees C                                     | 7.1                          | Std. Units           | 0.10               | 1               |                                  | 09/10/19 10:33                                     | 3             | H6   |  |
| 300.0 IC Anions 28 Days                                | Analytical Method: EPA 300.0 |                      |                    |                 |                                  |                                                    |               |      |  |
| Chloride<br>Fluoride<br>Sulfate                        | 624<br><0.20<br>1880         | mg/L<br>mg/L<br>mg/L | 100<br>0.20<br>100 | 100<br>1<br>100 |                                  | 09/11/19 23:55<br>09/11/19 23:25<br>09/11/19 23:55 | 5 16984-48-8  |      |  |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

QC Batch: 608466 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

METHOD BLANK: 2485612 Matrix: Water

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

Blank Reporting

Parameter Result Limit Qualifiers Units Analyzed Boron <100 09/11/19 10:55 ug/L 100 Calcium ug/L <200 200 09/11/19 10:55

LABORATORY CONTROL SAMPLE: 2485613

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L Boron 1000 1020 102 85-115 Calcium ug/L 10000 10500 105 85-115

MATRIX SPIKE SAMPLE: 2485614

Date: 09/16/2019 02:00 PM

| Parameter | Units | 60314116006<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers  |
|-----------|-------|-----------------------|----------------|--------------|-------------|-----------------|-------------|
| Boron     | ug/L  | 2260                  | 1000           | 3120         | 86          | 70-130          |             |
| Calcium   | ug/L  | 545000                | 10000          | 537000       | -80         | 70-130 N        | <i>I</i> 11 |

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2485615 2485616

| Parameter        | Units        | 60314218001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result   | MSD<br>Result  | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits  | RPD | Max<br>RPD | Qual |
|------------------|--------------|-----------------------|----------------------|-----------------------|----------------|----------------|-------------|--------------|------------------|-----|------------|------|
| Boron<br>Calcium | ug/L<br>ug/L | 0.37 mg/L<br>151 mg/L | 1000<br>10000        | 1000<br>10000         | 1370<br>161000 | 1320<br>156000 | 101<br>100  | 95<br>48     | 70-130<br>70-130 | 4   | 20<br>20   | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

QC Batch: 608257 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004

METHOD BLANK: 2484941 Matrix: Water
Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/10/19 13:00

LABORATORY CONTROL SAMPLE: 2484942

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 995 100 80-120

SAMPLE DUPLICATE: 2484943

60314117001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 11000 2 **Total Dissolved Solids** 10700 10 mg/L

SAMPLE DUPLICATE: 2484944

Date: 09/16/2019 02:00 PM

ParameterUnits60314116001 ResultDup ResultRPDMax RPDQualifiersTotal Dissolved Solidsmg/L31603120110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

QC Batch: 608542 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60314116005, 60314116006

METHOD BLANK: 2486059 Matrix: Water

Associated Lab Samples: 60314116005, 60314116006

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/11/19 13:39

LABORATORY CONTROL SAMPLE: 2486060

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2486061

60314116005 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 5490 4 10 **Total Dissolved Solids** 5290 mg/L

SAMPLE DUPLICATE: 2486062

Date: 09/16/2019 02:00 PM

60313369021 Dup Max RPD RPD Parameter Units Result Result Qualifiers 196 **Total Dissolved Solids** mg/L 196 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

QC Batch: 608287 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

SAMPLE DUPLICATE: 2485035

Date: 09/16/2019 02:00 PM

60313981001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers pH at 25 Degrees C 8.4 2 5 H6 Std. Units 8.5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

QC Batch: 608675 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

METHOD BLANK: 2486554 Matrix: Water

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | <1.0   | 1.0       | 09/11/19 12:24 |            |
| Fluoride  | mg/L  | <0.20  | 0.20      | 09/11/19 12:24 |            |
| Sulfate   | mg/L  | <1.0   | 1.0       | 09/11/19 12:24 |            |

| LABORATORY CONTROL SAMPLE: | 2486555 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 5     | 4.8    | 95    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.6    | 103   | 90-110 |            |
| Sulfate                    | mg/L    | 5     | 5.0    | 100   | 90-110 |            |

| MATRIX SPIKE & MATRIX SF | PIKE DUPL | ICATE: 2486 | 556   |       | 2486557 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |           | 60314116001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L      | 309         | 500   | 500   | 784     | 778    | 95    | 94    | 80-120 | 1   | 15  |      |
| Fluoride                 | mg/L      | <0.20       | 2.5   | 2.5   | 1.3     | 1.4    | 52    | 56    | 80-120 | 8   | 15  | M1   |
| Sulfate                  | mg/L      | 1650        | 500   | 500   | 2200    | 2150   | 110   | 100   | 80-120 | 2   | 15  | E    |

| MATRIX SPIKE SAMPLE: | 2486558 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60314117004 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Fluoride             | mg/L    | <0.20       | 2.5   | <0.20  | 0     | 80-120 | M1         |
| Sulfate              | mg/L    | 610         | 500   | 1130   | 104   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

QC Batch: 608942 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60314116004, 60314116005

METHOD BLANK: 2487470 Matrix: Water

Associated Lab Samples: 60314116004, 60314116005

Blank Reporting Result Limit Qualifiers Parameter Units Analyzed Chloride <1.0 09/12/19 10:12 mg/L 1.0 Sulfate mg/L <1.0 1.0 09/12/19 10:12

LABORATORY CONTROL SAMPLE: 2487471

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

 Chloride
 mg/L
 5
 4.7
 95
 90-110

 Sulfate
 mg/L
 5
 4.9
 98
 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2487472 2487473

MSD MS 60314116004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD RPD** Qual Chloride mg/L 33.6 25 25 61.7 61.4 112 111 80-120 15 Sulfate mg/L 287 25 25 381 383 224 233 80-120 15 E,M1

 MATRIX SPIKE SAMPLE:
 2487474
 60314218003
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Chloride
 mg/L
 41.9
 25
 74.7
 131
 80-120
 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **LABORATORIES**

PASI-K Pace Analytical Services - Kansas City

#### **ANALYTE QUALIFIERS**

Date: 09/16/2019 02:00 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

Date: 09/16/2019 02:00 PM

| Lab ID      | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|-----------------|----------|-------------------|---------------------|
| 60314116001 | MW-40     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116002 | MW-39     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116003 | MW-38     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116004 | MW-37     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116005 | MW-K      | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116006 | MW-L      | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116001 | MW-40     | SM 2540C        | 608257   |                   |                     |
| 60314116002 | MW-39     | SM 2540C        | 608257   |                   |                     |
| 60314116003 | MW-38     | SM 2540C        | 608257   |                   |                     |
| 60314116004 | MW-37     | SM 2540C        | 608257   |                   |                     |
| 60314116005 | MW-K      | SM 2540C        | 608542   |                   |                     |
| 60314116006 | MW-L      | SM 2540C        | 608542   |                   |                     |
| 60314116001 | MW-40     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116002 | MW-39     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116003 | MW-38     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116004 | MW-37     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116005 | MW-K      | SM 4500-H+B     | 608287   |                   |                     |
| 60314116006 | MW-L      | SM 4500-H+B     | 608287   |                   |                     |
| 60314116001 | MW-40     | EPA 300.0       | 608675   |                   |                     |
| 60314116002 | MW-39     | EPA 300.0       | 608675   |                   |                     |
| 60314116003 | MW-38     | EPA 300.0       | 608675   |                   |                     |
| 60314116004 | MW-37     | EPA 300.0       | 608675   |                   |                     |
| 60314116004 | MW-37     | EPA 300.0       | 608942   |                   |                     |
| 60314116005 | MW-K      | EPA 300.0       | 608675   |                   |                     |
| 60314116005 | MW-K      | EPA 300.0       | 608942   |                   |                     |
| 60314116006 | MW-L      | EPA 300.0       | 608675   |                   |                     |



## Sample Condition Upon Receipt



| Client Name: Wester                                                                          |                       |                      |                                             |
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------|
| :                                                                                            | PEX 🗆 ECI 🗆           | Pace ✓ Xroads □      | Client ☐ Other ☐                            |
| Tracking #: Pac                                                                              | ce Shipping Label Use | •                    |                                             |
| Custody Seal on Cooler/Box Present: Yes No                                                   | Seals intact: Yes     | √ No □               |                                             |
| Packing Material: Bubble Wrap □ Bubble Bags                                                  | □ Foam □              | None □ Othe          | er & zpl C                                  |
|                                                                                              | fice: Wet Blue No     | ne                   | *                                           |
| Cooler Temperature (°C): As-read 4.4,5-Corr. Fac                                             | tor 0.0 Correc        | ted 4.4 5.2          | Date and initials of person (19 \$\square\$ |
| Temperature should be above freezing to 6°C                                                  |                       | ,                    |                                             |
| Chain of Custody present:                                                                    | Yes □No □N/A          |                      |                                             |
| Chain of Custody relinquished:                                                               | →PYes □No □N/A        |                      |                                             |
| Samples arrived within holding time:                                                         | D¥es □No □N/A         |                      |                                             |
| Short Hold Time analyses (<72hr):                                                            | □Yes □No □N/A         |                      |                                             |
| Rush Turn Around Time requested:                                                             | □Yes □Mo □N/A         |                      |                                             |
| Sufficient volume:                                                                           | √es □No □N/A          |                      |                                             |
| Correct containers used:                                                                     | Ves □No □N/A          |                      |                                             |
| Pace containers used:                                                                        | ✓ Yes □No □N/A        |                      |                                             |
| Containers intact:                                                                           | Yes □No □N/A          |                      |                                             |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                       | □Yes □No □N/A         |                      |                                             |
| Filtered volume received for dissolved tests?                                                | □Yes □No ☑N/A         |                      |                                             |
| Sample labels match COC: Date / time / ID / analyses                                         | PYes □No □N/A         |                      |                                             |
| Samples contain multiple phases? Matrix:                                                     | □Yes ☑No □N/A         |                      |                                             |
| Containers requiring pH preservation in compliance?                                          | ✓es □No □N/A          |                      | es, lot #'s of preservative and the         |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) | •                     | date/time added.     |                                             |
| (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  Cyanide water sample checks:                  |                       |                      | 1                                           |
| Lead acetate strip turns dark? (Record only)                                                 | □Yes □No              |                      |                                             |
| Potassium iodide test strip tums blue/purple? (Preserve)                                     | ☐Yes ☐No              |                      |                                             |
| Trip Blank present:                                                                          | □Yes □No □N/A         |                      |                                             |
| Headspace in VOA vials ( >6mm):                                                              | □Yes □No •□N/A        |                      |                                             |
| Samples from USDA Regulated Area: State:                                                     | □Yes □No ☑N/A         |                      |                                             |
| Additional labels attached to 5035A / TX1005 vials in the field                              | ? □Yes □No ☑N/A       |                      |                                             |
| Client Notification/ Resolution: Copy COC t                                                  | o Client? Y / N       | Field Data Required? | Y / N                                       |
| Person Contacted: Date/                                                                      | Гіте:                 |                      |                                             |
| Comments/ Resolution:                                                                        |                       |                      |                                             |
|                                                                                              |                       |                      |                                             |
| Project Manager Review:                                                                      | Date                  | e:                   |                                             |



## CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| /             |                                       |                        |                       |                |          |           |            |                |             |            |                 |             |                                |                  |        |                                               |       |                   |               |               |                                         |          |        |          |          |          |                |                         |                          |                                |          |                         |
|---------------|---------------------------------------|------------------------|-----------------------|----------------|----------|-----------|------------|----------------|-------------|------------|-----------------|-------------|--------------------------------|------------------|--------|-----------------------------------------------|-------|-------------------|---------------|---------------|-----------------------------------------|----------|--------|----------|----------|----------|----------------|-------------------------|--------------------------|--------------------------------|----------|-------------------------|
| Section       | n A<br>ed Client Information:         |                        | Section I<br>Required |                | t Inform | nation:   |            |                |             |            |                 | tion        |                                | tion             |        |                                               |       |                   |               |               |                                         |          |        |          |          |          | Pag            | ge:                     |                          | of                             | T        |                         |
| Compar        |                                       | ERGY                   | Report To:            |                |          |           |            |                |             |            | _               | ntion:      | nforma<br>:                    | Ition:           |        |                                               | _     |                   | _             | _             | _                                       | 7        |        |          |          |          |                |                         |                          |                                | <u> </u> |                         |
| Address       | 818 Kansas A                          | ve                     | Сору То:              |                |          |           |            | _              |             | _          | Com             | npany       | / Name                         | e:               |        |                                               | _     | _                 |               |               |                                         | DE/      | GULAT  | OB       | / ACE    | NC       | ,              | _                       | -                        |                                |          |                         |
|               | Topeka, KS 66                         | 6612                   | -                     |                | _        |           |            |                |             |            | Addr            | ress:       |                                |                  |        |                                               |       |                   |               |               |                                         | $\vdash$ |        | _        | _        | _        | _              |                         |                          | 550000                         | 10.1111  |                         |
| Email T       |                                       | in@westarenergy.com    | Purchase              | Order N        | No.      | 10LEC 0   | 000001564  | IΩ             |             |            |                 | Quot        | te                             |                  |        |                                               |       |                   |               |               |                                         | 1        | NPDE   |          | □ GF     |          | ND VVA         | AIER                    |                          | DRINKIN                        | NG WA    | IER                     |
|               | 785-575-8135                          | Fax:                   | Project Na            |                |          |           |            |                |             |            | Refe            | rence:      | :                              | Llaak            | 1      | Vila a                                        | - 040 | 2 500             | 1.4.40        |               |                                         | F        | UST    | _        | RC       | RA       |                | <i>V</i>                | 777777                   | OTHER                          | ,,,,,    | ,,,,,,,,,,,,            |
|               |                                       | 7 day                  |                       |                | LEC      | mactive   | Ash Pond   | SUCR           |             |            | Mana            | ager:       |                                | Heat             |        | VIISO                                         | n 913 | 3-303             | 5-140         | /             |                                         | Sit      | e Loca | tion     |          | KS       | 3              |                         |                          |                                |          |                         |
| Reques        | ited Due Date/TAT:                    | r day                  | Project Nu            | mber,          |          |           |            |                |             |            | Pace            | PIOII       | ile #.                         | 9655             | , 2    |                                               |       | ,                 |               |               |                                         | _        | STA    | _        |          |          |                | - 1/                    |                          |                                |          |                         |
|               | т                                     |                        |                       | _              |          |           |            |                |             | _          | -               | 1           |                                |                  |        |                                               |       |                   | Re            | que           | sted                                    | Anal     | ysis F | iltere   | ed (Y/I  | N)       | _              |                         |                          |                                |          |                         |
|               | Section D Required Client Information | Valid Matrix           | Codes<br>CODE         | left)          | MP)      |           | COLLE      | CTED           |             | 1          |                 |             |                                | Prese            | rvati  | ves                                           |       | N /A              |               |               |                                         |          |        |          |          |          |                |                         |                          |                                |          |                         |
|               |                                       | DRINKING WATE WATER    |                       | codes to left) | C=COMP)  |           |            | .0125          |             | 1 2        | 1               | $\vdash$    | П                              | 1                |        | T                                             | т     | ŕ                 | $\vdash$      | +             | +                                       | $\vdash$ |        | Н        | $\dashv$ | т        | <del>l ľ</del> | T                       |                          | 1111111                        | 444      | (////////               |
|               |                                       | WASTE WATER<br>PRODUCT |                       | valid co       | Ö        | COMPO     |            | COMPO<br>END/G | SITE<br>RAB | COLLECTION |                 |             |                                |                  | Н      |                                               |       | Ш                 |               |               |                                         |          |        |          |          |          |                | <u>وا</u>               |                          |                                |          |                         |
|               |                                       | SOIL/SOLID<br>OIL      | SL<br>OL              | (see va        | (G=GRAB  |           |            |                |             | 1          | [ <sub>(0</sub> |             |                                |                  | Н      |                                               |       |                   | *S E          |               |                                         |          |        |          |          |          |                | [3                      |                          |                                |          |                         |
|               | SAMPLE                                | AIR                    | WP<br>AR              |                | 9        |           |            |                |             | ATC        | CONTAINERS      |             |                                |                  |        |                                               |       | Test              | Total Metals* | 2             |                                         |          | 4      |          |          |          |                | ΪĮ                      |                          |                                |          |                         |
|               | (A-Z, 0-9 /<br>Sample IDs MUST E      |                        | OT<br>TS              | l do           | TYPE     |           |            |                |             | TEMP       | Ĭ¥.             | Ved         |                                |                  |        |                                               |       |                   | tal.          |               | 3   _                                   | Ш        |        |          |          |          | 2              | 히.                      | 1-0                      | 3141                           | ماا      |                         |
| **            |                                       |                        |                       | ×              | Ĺ<br>Щ   |           |            |                |             | I E        |                 | Ser         | 4                              |                  |        | o<br>o                                        | oug . | lys               |               | 2   c         | ± = = = = = = = = = = = = = = = = = = = |          |        |          |          |          |                | nal                     | 60                       | <i>)</i> (()                   | (4       |                         |
| TEM           |                                       |                        |                       | MATRIX CODE    | SAMPLE   |           |            |                |             | SAMPLE     | # OF (          | Unpreserved | H <sub>2</sub> SO <sub>4</sub> | HNO <sub>3</sub> | NaOH   | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Metha | <b>↓</b> Analysis | 200.7         | 300: CI, F, S | 4500                                    |          |        |          |          |          |                | Residual Chlorine (Y/N) |                          |                                |          |                         |
| _             | 1 60112 140                           |                        |                       | _ ≥            | 1        | DATE      | TIME       | DATE           | TIME        | (y)        | -               | -           | 기프                             | I I              | Z      | Z :                                           | ≥  0  | -                 | 2 2           | 5 6           | 1 4                                     | +        | +      | Н        | -        | ⊢        | -              | 4                       | Pace                     | Project                        | No./ L   | _ab I.D.                |
| 1             | MW-40                                 |                        | N                     | 1              | 0        |           |            | 11119          | 1459        | +-         | 3               |             | +                              | +                | +      | -                                             | +     |                   | X/            | $\mathbb{R}$  | 1                                       | $\vdash$ | -      | $\vdash$ | -        | $\vdash$ |                | +                       |                          |                                |          | 100                     |
| 2             | mw-39                                 |                        | V                     | _              | G        |           |            | 14/19          | 1347        | +          | _               | _           |                                | 1                | +      | +                                             | +     |                   | $\mathbb{R}$  | $\mathbb{H}$  | XX                                      | +        | -      | $\vdash$ | +        | $\vdash$ | +              | +                       | -                        |                                |          | 200                     |
| 3             | MW-38<br>MW-37                        |                        | V                     |                | 6        |           | 1          | 74/19          | 1904        | +          | 3               |             |                                | 1                | +      | +                                             | +     | -                 | $\frac{1}{2}$ | $\times$      | $\mathbb{R}$                            | +        | +      | $\vdash$ | -        | $\vdash$ | $\vdash$       | +                       |                          |                                |          | 9 33                    |
| 4             |                                       |                        | 11                    |                | 4        |           |            | 15/19          |             | +-         | 3               | 7           | +                              | I                | +      |                                               | -     | 111               |               | $\frac{1}{2}$ | (X                                      | $\vdash$ | -      |          |          |          | $\vdash$       | +                       |                          |                                |          | OoU                     |
| 5             | HW-K                                  |                        | И                     | 7              | 5        |           |            | 7/5/19         | 1022        | +          | 3               | 12          | H                              | +                | +      | +                                             | -     |                   | H             |               | -                                       | +        |        | H        | -        | $\vdash$ |                | +                       |                          |                                |          | 065                     |
| 6             | MW-L                                  |                        |                       | 1/1_           | V        |           |            | 1/5/["         | 1713        | +          | 12              | 1           | 11                             | +                | Н      | +                                             | +     | 1                 | 4             | 4             | 4                                       | $\vdash$ | +      | $\vdash$ | _        | $\vdash$ | $\vdash$       | +                       |                          |                                |          | 006                     |
| 7             | 1                                     |                        |                       | $\vdash$       |          |           |            |                |             | +          | $\vdash$        | +           | H                              | +                | +      | +                                             | +     |                   | H             | +             | +                                       | H        | +      | H        | +        | $\vdash$ | H              | +                       |                          |                                |          |                         |
| 8             |                                       |                        |                       |                |          |           |            |                | -           | +          | ╁               | +           | H                              | +                | H      | +                                             | +     |                   | +             | +             | +                                       | +        | +      | $\vdash$ | -        | $\vdash$ | $\vdash$       | +                       | H                        |                                |          |                         |
| 10            |                                       |                        |                       |                |          |           |            |                |             | +          | $\vdash$        | +           | +                              |                  | Н      | $\dashv$                                      |       |                   |               | +             |                                         | П        | 1      | Н        |          |          | $\vdash$       | $\top$                  |                          |                                |          |                         |
| 11            |                                       |                        |                       |                | П        |           |            |                |             | 1          | ╁               | #           | Ħ                              | =                | $\Box$ | $\top$                                        |       |                   | H             | +             | +                                       |          | 1      |          |          | Т        | $\Box$         | $^{\dagger}$            |                          |                                |          |                         |
| 12            | İ                                     |                        |                       |                |          |           |            |                |             | 1          |                 |             | $\Box$                         |                  | П      |                                               |       |                   | $\vdash$      |               | $\top$                                  |          |        | П        |          |          | $\Box$         | $\top$                  |                          |                                |          |                         |
|               | ADDITIONAL                            | COMMENTS               |                       | REL            | INQUI    | SHED BY / | AFFILIATIO | N N            | DAT         | E          |                 | ТІМЕ        | E                              | TE               | _      | ACC                                           | EPTE  | D BY              | AFFIL         | LIATI         | ON                                      | М        | DAT    | E        | TIM      | E        |                |                         | SAME                     | LE COND                        | ITIONS   |                         |
| 200 7 T       | otal Metals*: B, Ca                   |                        | Mrd                   | . M/C          | lev      | 6 100.    | rc/HI      | h              | 9/6/1       | a          | 12              | 00          | 5                              | Va               | 11     | 100                                           | 1     | 2,                | -0.4          |               | 1.                                      |          | 9/4    | 19       | 152      | 70       | 4.4            | 1                       | V                        | -1                             | T        | ý                       |
|               |                                       |                        | II (ISM               |                | IUU      | VIIII     | 711        | T-             | 11.00/1     | L          | 111             | UL          |                                | VZV              |        | 17!                                           | Ą     | 06                | 100           |               | 11/4                                    | u        | 11 01  | 11       | 100      |          | 5              | <del>}</del>            | Ť                        | 7                              | 1        |                         |
|               |                                       |                        | _                     |                |          |           |            |                |             |            | -               |             |                                |                  |        |                                               |       |                   |               |               |                                         | -        |        | -        |          |          | 5              | 9                       |                          |                                | 1        |                         |
|               |                                       |                        |                       |                | _        |           |            |                |             |            | _               |             |                                |                  |        |                                               |       |                   |               |               |                                         |          |        | _        |          |          |                | $\perp$                 |                          |                                |          |                         |
|               |                                       |                        |                       |                |          |           |            |                |             |            |                 |             |                                |                  |        |                                               |       |                   |               |               |                                         |          |        |          |          |          |                |                         |                          |                                |          |                         |
| g             |                                       |                        |                       |                |          |           | SAMPLE     | RNAME          | AND SIGN    | ATU        | RE              |             |                                |                  |        |                                               |       |                   |               |               |                                         |          |        |          |          |          | ပ္             |                         | uo 🥱                     | ealed<br>/N)                   |          | nlact                   |
| rage zo oi zo |                                       |                        |                       |                |          |           | F          | RINT Nan       | ne of SAMI  | PLER       | M               | LSh         | Ko n                           | nill             | er     | -/A                                           | ilm   | 400               |               |               |                                         |          |        |          |          |          | Temp in °C     |                         | Received on<br>Ice (Y/N) | Custody Sealed<br>Cooler (Y/N) |          | Samples Intact<br>(Y/N) |
| 9             |                                       |                        |                       |                |          |           |            |                | E of SAMI   |            |                 | 1           | la                             | 0                |        |                                               |       |                   | DAT           | TE SI         | gned<br>YY):                            | 91       | 6/10   | í        |          |          | Ten            |                         | Rec                      | Cool                           |          | Samp                    |
| 2             |                                       |                        |                       |                |          |           |            | _              |             |            | _               | -           |                                |                  | _      |                                               | _     | _                 | - Cinyin      |               | * 1 J+                                  | 12       | W.L.L  | -        |          |          | _              |                         |                          |                                |          |                         |

ATTACHMENT 1-2
December 2019 Sampling Event
Laboratory Analytical Report



December 18, 2019

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

RE: Project: LEC CCR

Pace Project No.: 60323644

## Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on December 09, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Danson Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company
HEATH HORYNA, WESTAR ENERGY
Andrew Hare, KCP&L and Westar, Evergy Companies
Laura Hines, KCP&L & Westar, Evergy Companies
Jake Humphrey, KCP&L and Westar, Evergy Companies
Tabitha Hylton, KCP&L & Westar, Evergy Companies
Samantha Kaney, Haley & Aldrich
JARED MORRISON, KCP&L and Westar, Evergy
Companies
Melissa Michels, KCP&L & Westar, Evergy Companies

Danielle Zinmaster, Haley & Aldrich







#### **CERTIFICATIONS**

Project: LEC CCR
Pace Project No.: 60323644

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 19-016-0

Arkansas Drinking Water Illinois Certification #: 004455

Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



## **SAMPLE SUMMARY**

Project: LEC CCR
Pace Project No.: 60323644

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60323644001 | MW-37-120619 | Water  | 12/06/19 09:25 | 12/09/19 16:10 |
| 60323644002 | MW-38-120619 | Water  | 12/06/19 10:45 | 12/09/19 16:10 |
| 60323644003 | MW-K-120619  | Water  | 12/06/19 12:00 | 12/09/19 16:10 |
| 60323644004 | MW-L-120619  | Water  | 12/06/19 13:00 | 12/09/19 16:10 |
| 60323644005 | MW-39-120619 | Water  | 12/06/19 14:00 | 12/09/19 16:10 |
| 60323644006 | DUP-120619   | Water  | 12/06/19 14:15 | 12/09/19 16:10 |
| 60323644007 | MW-40-120619 | Water  | 12/06/19 15:40 | 12/09/19 16:10 |



## **SAMPLE ANALYTE COUNT**

Project: LEC CCR
Pace Project No.: 60323644

| Lab ID      | Sample ID    | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|-----------|----------|----------------------|------------|
| 60323644001 | MW-37-120619 | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644002 | MW-38-120619 | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644003 | MW-K-120619  | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 0323644004  | MW-L-120619  | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 0323644005  | MW-39-120619 | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644006 | DUP-120619   | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 0323644007  | MW-40-120619 | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |              | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |              | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |              | EPA 300.0 | MJK      | 1                    | PASI-K     |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-37-120619          | Lab ID: 6032    | 23644001    | Collected: 12/06/1  | 9 09:25 | Received: 12   | 2/09/19 16:10 N | Matrix: Water |      |
|-------------------------------|-----------------|-------------|---------------------|---------|----------------|-----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparation Met | hod: EP | A 200.7        |                 |               |      |
| Barium, Total Recoverable     | 0.061           | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:37  | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:37  | 7440-41-7     |      |
| Chromium, Total Recoverable   | < 0.0050        | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:37  | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:37  | 7439-92-1     |      |
| Lithium                       | 0.017           | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:37  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparation Met | hod: EP | A 200.8        |                 |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.0078          | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.14            | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:52  | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparation Met | hod: EP | A 245.1        |                 |               |      |
| Mercury                       | <0.20           | ug/L        | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:09  | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0                 |         |                |                 |               |      |
| Fluoride                      | 0.27            | mg/L        | 0.20                | 1       |                | 12/12/19 21:55  | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-38-120619          | Lab ID: 6032    | 23644002     | Collected: 12/06/1  | 9 10:45 | Received: 12   | 2/09/19 16:10 N | Matrix: Water |      |
|-------------------------------|-----------------|--------------|---------------------|---------|----------------|-----------------|---------------|------|
| Parameters                    | Results         | Units        | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 200 | 0.7 Preparation Met | hod: EP | A 200.7        |                 |               |      |
| Barium, Total Recoverable     | 0.031           | mg/L         | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:40  | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L         | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:40  | 7440-41-7     |      |
| Chromium, Total Recoverable   | < 0.0050        | mg/L         | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:40  | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L         | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:40  | 7439-92-1     |      |
| Lithium                       | 0.075           | mg/L         | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:40  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 200 | 0.8 Preparation Met | hod: EP | A 200.8        |                 |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.015           | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L         | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.092           | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L         | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 12:54  | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 245 | 5.1 Preparation Met | hod: EP | A 245.1        |                 |               |      |
| Mercury                       | <0.20           | ug/L         | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:11  | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 300 | 0.0                 |         |                |                 |               |      |
| Fluoride                      | 5.0             | mg/L         | 0.20                | 1       |                | 12/12/19 22:11  | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-K-120619           | Lab ID: 6032    | 23644003      | Collected: 12/06/1 | 9 12:00 | Received: 12   | /09/19 16:10 M | latrix: Water |      |
|-------------------------------|-----------------|---------------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units         | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 200. | 7 Preparation Met  | hod: EF | PA 200.7       |                |               |      |
| Barium, Total Recoverable     | 0.040           | mg/L          | 0.0050             | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L          | 0.0010             | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L          | 0.0050             | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L          | 0.010              | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7439-92-1     |      |
| Lithium                       | 0.089           | mg/L          | 0.010              | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 200.  | 8 Preparation Met  | hod: EF | PA 200.8       |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L          | 0.0010             | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.076           | mg/L          | 0.0010             | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L          | 0.00050            | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L          | 0.0010             | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.0096          | mg/L          | 0.0010             | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L          | 0.0010             | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0050         | mg/L          | 0.0050             | 5       | 12/11/19 16:10 | 12/18/19 13:38 | 7440-28-0     | D3   |
| 245.1 Mercury                 | Analytical Meth | od: EPA 245.  | 1 Preparation Met  | hod: EF | PA 245.1       |                |               |      |
| Mercury                       | <0.20           | ug/L          | 0.20               | 1       | 12/12/19 15:00 | 12/16/19 12:18 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 300.  | 0                  |         |                |                |               |      |
| Fluoride                      | 2.9             | mg/L          | 0.20               | 1       |                | 12/12/19 22:27 | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-L-120619           | Lab ID: 6032    | 23644004    | Collected: 12/06/1  | 9 13:00 | Received: 12   | 2/09/19 16:10 M | fatrix: Water |      |
|-------------------------------|-----------------|-------------|---------------------|---------|----------------|-----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 200 | 0.7 Preparation Met | hod: EP | A 200.7        |                 |               |      |
| Barium, Total Recoverable     | 0.037           | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:49  | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:49  | 7440-41-7     |      |
| Chromium, Total Recoverable   | < 0.0050        | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:49  | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:49  | 7439-92-1     |      |
| Lithium                       | 0.057           | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:49  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 200 | 0.8 Preparation Met | hod: EP | A 200.8        |                 |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.029           | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.055           | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:03  | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0050         | mg/L        | 0.0050              | 5       | 12/11/19 16:10 | 12/18/19 13:40  | 7440-28-0     | D3   |
| 245.1 Mercury                 | Analytical Meth | od: EPA 245 | 5.1 Preparation Met | hod: EP | A 245.1        |                 |               |      |
| Mercury                       | <0.20           | ug/L        | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:20  | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 300 | 0.0                 |         |                |                 |               |      |
| Fluoride                      | 2.0             | mg/L        | 0.20                | 1       |                | 12/12/19 23:14  | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-39-120619          | Lab ID: 6032    | 23644005    | Collected: 12/06/1  | 9 14:00 | Received: 12   | 2/09/19 16:10 N | Matrix: Water |      |
|-------------------------------|-----------------|-------------|---------------------|---------|----------------|-----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 200 | 0.7 Preparation Met | hod: EP | A 200.7        |                 |               |      |
| Barium, Total Recoverable     | 0.030           | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:51  | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:51  | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:51  | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:51  | 7439-92-1     |      |
| Lithium                       | 0.045           | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:51  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 200 | 0.8 Preparation Met | hod: EP | A 200.8        |                 |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.014           | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.19            | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:06  | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | od: EPA 245 | 5.1 Preparation Met | hod: EP | A 245.1        |                 |               |      |
| Mercury                       | <0.20           | ug/L        | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:22  | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 300 | 0.0                 |         |                |                 |               |      |
| Fluoride                      | 2.9             | mg/L        | 0.20                | 1       |                | 12/12/19 23:30  | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: DUP-120619            | Lab ID: 6032    | 23644006    | Collected: 12/06/1  | 9 14:15 | Received: 12   | /09/19 16:10 N | Matrix: Water |      |
|-------------------------------|-----------------|-------------|---------------------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limit        | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 200 | 0.7 Preparation Met | hod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.031           | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:53 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:53 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:53 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:53 | 7439-92-1     |      |
| Lithium                       | 0.042           | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:53 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 200 | ).8 Preparation Met | hod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.014           | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.19            | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:08 | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | od: EPA 245 | 5.1 Preparation Met | hod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L        | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:25 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 300 | 0.0                 |         |                |                |               |      |
| Fluoride                      | 2.9             | mg/L        | 0.20                | 1       |                | 12/12/19 23:46 | 16984-48-8    |      |



Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Sample: MW-40-120619          | Lab ID: 6032    | 23644007    | Collected: 12/06/1  | 9 15:40 | Received: 12   | 2/09/19 16:10 N | Natrix: Water |     |
|-------------------------------|-----------------|-------------|---------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                    | Results         | Units       | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparation Met | hod: EP | A 200.7        |                 |               |     |
| Barium, Total Recoverable     | 0.031           | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:55  | 7440-39-3     |     |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 14:00 | 12/13/19 16:55  | 7440-41-7     |     |
| Chromium, Total Recoverable   | < 0.0050        | mg/L        | 0.0050              | 1       | 12/11/19 14:00 | 12/13/19 16:55  | 7440-47-3     |     |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:55  | 7439-92-1     |     |
| Lithium                       | 0.045           | mg/L        | 0.010               | 1       | 12/11/19 14:00 | 12/13/19 16:55  | 7439-93-2     |     |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparation Met | hod: EP | A 200.8        |                 |               |     |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7440-36-0     |     |
| Arsenic, Total Recoverable    | 0.015           | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7440-38-2     |     |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.00050             | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7440-43-9     |     |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7440-48-4     |     |
| Molybdenum, Total Recoverable | 0.11            | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7439-98-7     |     |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7782-49-2     |     |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.0010              | 1       | 12/11/19 16:10 | 12/18/19 13:10  | 7440-28-0     |     |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparation Met | hod: EP | A 245.1        |                 |               |     |
| Mercury                       | <0.20           | ug/L        | 0.20                | 1       | 12/12/19 15:00 | 12/16/19 12:27  | 7439-97-6     |     |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0                 |         |                |                 |               |     |
| Fluoride                      | 1.6             | mg/L        | 0.20                | 1       |                | 12/13/19 00:18  | 16984-48-8    |     |



#### **QUALITY CONTROL DATA**

Project: LEC CCR Pace Project No.: 60323644

QC Batch: 627969 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

METHOD BLANK: 2559568 Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersMercuryug/L<0.20</td>0.2012/16/19 11:50

LABORATORY CONTROL SAMPLE:

Mercury

Date: 12/18/2019 03:39 PM

Spike LCS LCS % Rec Conc. Parameter Units Result % Rec Limits Qualifiers Mercury ug/L 4.7 95 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2559570 2559571

ug/L

2559569

MS MSD MSD 60323643002 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 5 5 2.5 2.5 51 70-130 20 M1 Mercury ug/L < 0.20 49

 MATRIX SPIKE SAMPLE:
 2559572

 60323644007
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

5

4.8

70-130

96

< 0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665



#### **QUALITY CONTROL DATA**

Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

QC Batch: 627594 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

METHOD BLANK: 2558035 Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

|           |       | Blank    | Reporting |                |            |
|-----------|-------|----------|-----------|----------------|------------|
| Parameter | Units | Result   | Limit     | Analyzed       | Qualifiers |
| Barium    | mg/L  | <0.0050  | 0.0050    | 12/13/19 16:11 |            |
| Beryllium | mg/L  | < 0.0010 | 0.0010    | 12/13/19 16:11 |            |
| Chromium  | mg/L  | < 0.0050 | 0.0050    | 12/13/19 16:11 |            |
| Lead      | mg/L  | < 0.010  | 0.010     | 12/13/19 16:11 |            |
| Lithium   | ma/L  | < 0.010  | 0.010     | 12/13/19 16:11 |            |

| LABORATORY CONTROL SAMPLE: | 2558037 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Barium                     | mg/L    |       | 1.0    | 101   | 85-115 |            |
| Beryllium                  | mg/L    | 1     | 0.97   | 97    | 85-115 |            |
| Chromium                   | mg/L    | 1     | 1.0    | 100   | 85-115 |            |
| Lead                       | mg/L    | 1     | 1.0    | 102   | 85-115 |            |
| Lithium                    | mg/L    | 1     | 0.98   | 98    | 85-115 |            |

| MATRIX SPIKE SAMPLE: | 2558038 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
| ъ.                   | 11.5    | 60323643001 | Spike | MS     | MS    | % Rec  | 0 110      |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Barium               | mg/L    | 0.077       | 1     | 1.1    | 103   | 70-130 |            |
| Beryllium            | mg/L    | < 0.0010    | 1     | 0.99   | 99    | 70-130 |            |
| Chromium             | mg/L    | < 0.0050    | 1     | 1.0    | 101   | 70-130 |            |
| Lead                 | mg/L    | <0.010      | 1     | 0.98   | 98    | 70-130 |            |
| Lithium              | mg/L    | 0.024       | 1     | 1.0    | 101   | 70-130 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPLI | ICATE: 2558 | 039         |              | 2558040 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           | 60323009001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Barium                   | mg/L      | 340 ug/L    | 1           | 1            | 1.4     | 1.3    | 103   | 97    | 70-130 | 4   | 20  |      |
| Beryllium                | mg/L      | ND          | 1           | 1            | 0.97    | 0.93   | 97    | 93    | 70-130 | 4   | 20  |      |
| Chromium                 | mg/L      | 5.6 ug/L    | 1           | 1            | 0.98    | 0.94   | 97    | 93    | 70-130 | 4   | 20  |      |
| Lead                     | mg/L      | ND          | 1           | 1            | 0.95    | 0.91   | 95    | 91    | 70-130 | 4   | 20  |      |
| Lithium                  | mg/L      | 192 ug/L    | 1           | 1            | 1.2     | 1.2    | 102   | 97    | 70-130 | 4   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665



#### **QUALITY CONTROL DATA**

Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

QC Batch: 627660 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

METHOD BLANK: 2558261 Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

|            |       | Blank     | Reporting |                |            |
|------------|-------|-----------|-----------|----------------|------------|
| Parameter  | Units | Result    | Limit     | Analyzed       | Qualifiers |
| Antimony   | mg/L  | <0.0010   | 0.0010    | 12/18/19 12:34 |            |
| Arsenic    | mg/L  | < 0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Cadmium    | mg/L  | < 0.00050 | 0.00050   | 12/18/19 12:34 |            |
| Cobalt     | mg/L  | < 0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Molybdenum | mg/L  | < 0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Selenium   | mg/L  | < 0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Thallium   | ma/L  | < 0.0010  | 0.0010    | 12/18/19 12:34 |            |

| LABORATORY CONTROL SAMPLE: | 2558262 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | mg/L    | 0.04  | 0.039  | 96    | 85-115 | _          |
| Arsenic                    | mg/L    | 0.04  | 0.039  | 98    | 85-115 |            |
| Cadmium                    | mg/L    | 0.04  | 0.039  | 97    | 85-115 |            |
| Cobalt                     | mg/L    | 0.04  | 0.040  | 100   | 85-115 |            |
| Molybdenum                 | mg/L    | 0.04  | 0.040  | 99    | 85-115 |            |
| Selenium                   | mg/L    | 0.04  | 0.039  | 96    | 85-115 |            |
| Thallium                   | mg/L    | 0.04  | 0.037  | 93    | 85-115 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 2558  |             |              | 2558264 |        |       |       |        |     |     |      |
|-----------------------|-------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       | (           | 60323643002 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units       | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony              | mg/L        | <0.0010     | 0.04        | 0.04         | 0.038   | 0.038  | 96    | 96    | 70-130 | 0   | 20  |      |
| Arsenic               | mg/L        | 0.026       | 0.04        | 0.04         | 0.066   | 0.066  | 101   | 101   | 70-130 | 0   | 20  |      |
| Cadmium               | mg/L        | < 0.00050   | 0.04        | 0.04         | 0.036   | 0.035  | 89    | 88    | 70-130 | 0   | 20  |      |
| Cobalt                | mg/L        | 0.0028      | 0.04        | 0.04         | 0.042   | 0.042  | 98    | 99    | 70-130 | 1   | 20  |      |
| Molybdenum            | mg/L        | 0.0043      | 0.04        | 0.04         | 0.048   | 0.048  | 108   | 109   | 70-130 | 1   | 20  |      |
| Selenium              | mg/L        | < 0.0010    | 0.04        | 0.04         | 0.038   | 0.039  | 94    | 95    | 70-130 | 1   | 20  |      |
| Thallium              | mg/L        | < 0.0010    | 0.04        | 0.04         | 0.036   | 0.036  | 90    | 90    | 70-130 | 0   | 20  |      |

| MATRIX SPIKE SAMPLE: | 2558265 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60323644007 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony             | mg/L    | <0.0010     | 0.04  | 0.038  | 94    | 70-130 |            |
| Arsenic              | mg/L    | 0.015       | 0.04  | 0.058  | 109   | 70-130 |            |
| Cadmium              | mg/L    | < 0.00050   | 0.04  | 0.034  | 85    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| MATRIX SPIKE SAMPLE: | 2558265 |                       |                |              |             |                 |            |
|----------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Parameter            | Units   | 60323644007<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Cobalt               | mg/L    | <0.0010               | 0.04           | 0.038        | 96          | 70-130          |            |
| Molybdenum           | mg/L    | 0.11                  | 0.04           | 0.16         | 119         | 70-130          |            |
| Selenium             | mg/L    | < 0.0010              | 0.04           | 0.041        | 101         | 70-130          |            |
| Thallium             | mg/L    | <0.0010               | 0.04           | 0.037        | 92          | 70-130          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:

#### **QUALITY CONTROL DATA**

EPA 300.0

Pace Project No.: 60323644

QC Batch: 627689 Analysis Method:

LEC CCR

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

METHOD BLANK: 2558364 Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers
Fluoride mg/L <0.20 0.20 12/12/19 13:46

METHOD BLANK: 2560357 Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersFluoridemg/L<0.20</td>0.2012/13/19 09:25

LABORATORY CONTROL SAMPLE: 2558365

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 2.5 2.4 97 90-110

LABORATORY CONTROL SAMPLE: 2560358

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 2.5 2.4 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2558366 2558367

MS MSD 60323643001 Spike Spike MS MSD MS MSD % Rec Max Parameter Conc. RPD Units Result Conc. Result Result % Rec % Rec I imits **RPD** Qual Fluoride < 0.20 2.5 2.5 2.8 2.9 110 2 112 80-120 15 mg/L

MATRIX SPIKE SAMPLE: 2558368

Date: 12/18/2019 03:39 PM

60323644006 Spike MS MS % Rec Parameter Units Result Conc. % Rec Limits Qualifiers Result 2.9 5.9 119 80-120 Fluoride mg/L 2.5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: LEC CCR Pace Project No.: 60323644

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **LABORATORIES**

PASI-K Pace Analytical Services - Kansas City

#### **ANALYTE QUALIFIERS**

Date: 12/18/2019 03:39 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: LEC CCR
Pace Project No.: 60323644

Date: 12/18/2019 03:39 PM

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60323644001 | MW-37-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644002 | MW-38-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644003 | MW-K-120619  | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644004 | MW-L-120619  | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644005 | MW-39-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644006 | DUP-120619   | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644007 | MW-40-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644001 | MW-37-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644002 | MW-38-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644003 | MW-K-120619  | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644004 | MW-L-120619  | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644005 | MW-39-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644006 | DUP-120619   | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644007 | MW-40-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644001 | MW-37-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644002 | MW-38-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644003 | MW-K-120619  | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644004 | MW-L-120619  | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644005 | MW-39-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644006 | DUP-120619   | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644007 | MW-40-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 0323644001  | MW-37-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644002 | MW-38-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644003 | MW-K-120619  | EPA 300.0       | 627689   |                   |                     |
| 60323644004 | MW-L-120619  | EPA 300.0       | 627689   |                   |                     |
| 60323644005 | MW-39-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644006 | DUP-120619   | EPA 300.0       | 627689   |                   |                     |
| 60323644007 | MW-40-120619 | EPA 300.0       | 627689   |                   |                     |



# Sample Condition Upon Receipt



| Client Name: wcstar Energy                                                                             |                    |                                                                            |
|--------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------|
| Courier: FedEx □ UPS □ VIA □ Clay □ P                                                                  | EX 🗆 ECI 🗆         | Pace ✓ Xroads □ Client □ Other □                                           |
| Tracking #: Pace                                                                                       | Shipping Label Use | d? Yes□ Nø□                                                                |
| Custody Seal on Cooler/Box Present: Yes 🗆 No 🖊                                                         | Seals intact: Yes  | □ No/□                                                                     |
| Packing Material: Bubble Wrap □ Bubble Bags □                                                          | Foam □             | None ☐ Other □                                                             |
| Thermometer Used: <u>T-298</u> Type of I                                                               | lce: (Vet) Blue No |                                                                            |
| Cooler Temperature (°C): As-read 2.1/2.8 Corr. Facto                                                   | r_0.0 Correct      | ted 2.1/2.8 Date and initials of person examining contents:                |
| Temperature should be above freezing to 6°C                                                            |                    | P12/9/19                                                                   |
| Chain of Custody present:                                                                              | Yes No N/A         |                                                                            |
| Chain of Custody relinquished:                                                                         | Yes No N/A         |                                                                            |
| Samples arrived within holding time:                                                                   | Yes No N/A         |                                                                            |
| Short Hold Time analyses (<72hr):                                                                      | □Yes ☑No □N/A      |                                                                            |
| Rush Turn Around Time requested:                                                                       | □Yes No □N/A       |                                                                            |
| Sufficient volume:                                                                                     | Yes No N/A         |                                                                            |
| Correct containers used:                                                                               | Yes No NA          |                                                                            |
| Pace containers used:                                                                                  | ZYes □No □N/A      |                                                                            |
| Containers intact:                                                                                     | Yes No N/A         |                                                                            |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                 | □Yes □No ☑N/A      |                                                                            |
| Filtered volume received for dissolved tests?                                                          | □Yes □No □N/A      |                                                                            |
| Sample labels match COC: Date / time / ID / analyses                                                   | Yes ONO ON/A       |                                                                            |
| Samples contain multiple phases? Matrix:                                                               | □Yes No □N/A       |                                                                            |
| Containers requiring pH preservation in compliance?                                                    | ✓Yes □No □N/A      | List sample IDs, volumes, lot #'s of preservative and the date/time added. |
| (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) |                    | date/unie added.                                                           |
| Cyanide water sample checks:                                                                           |                    |                                                                            |
| Lead acetate strip turns dark? (Record only)                                                           | □Yes □No           |                                                                            |
| Potassium iodide test strip turns blue/purple? (Preserve)                                              | □Yes □No           |                                                                            |
| Trip Blank present:                                                                                    | □Yes □No □N/A      |                                                                            |
| Headspace in VOA vials ( >6mm):                                                                        | □Yes □No □N/A      |                                                                            |
| Samples from USDA Regulated Area: State:                                                               | □Yes □No ☑N/A      |                                                                            |
| Additional labels attached to 5035A / TX1005 vials in the field?                                       | □Yes □No ☑N/A      |                                                                            |
| Client Notification/ Resolution: Copy COC to                                                           | Client? Y / N      | Field Data Required? Y / N                                                 |
| Person Contacted: Date/Til                                                                             | me:                |                                                                            |
| Comments/ Resolution:                                                                                  |                    |                                                                            |
|                                                                                                        |                    |                                                                            |
| Project Manager Review:                                                                                | Date               | e:                                                                         |



# **CHAIN-OF-CUSTODY / Analytical Request Document**

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A Required Client Information:                                         | Section B<br>Required Project Information: | 0                           | Section C                                     | ation:                                                                                            |                                                                          | ,                | [        | Page:                   |                          | of                             |                           |
|--------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|----------|-------------------------|--------------------------|--------------------------------|---------------------------|
| Company: WESTAR ENERGY                                                         | Report To: Brandon Griffin -               | Adam Knee                   | Attention:                                    |                                                                                                   |                                                                          |                  |          |                         |                          |                                | 11                        |
| Address: 818 Kansas Ave                                                        | Copy To: Jared Morrison                    |                             | Company Nar                                   | ne;                                                                                               |                                                                          | REGULATORY       | AGENCY   |                         |                          | 187                            | 1 17                      |
| Topeka, KS 66612 haleyaldri                                                    | ch. Com                                    |                             | Address:                                      |                                                                                                   |                                                                          | ☐ NPDES ☐        | GROUN    | ID WATE                 | R L C                    | ORINKING V                     | /ATER                     |
| mail To: brandon l.griffin@westarenergy.com                                    | Purchase Order No.: 10LEC-0                | 0000015648                  | Pace Quote<br>Reference:                      |                                                                                                   |                                                                          | L NST E          | RCRA     |                         | ГС                       | THER                           |                           |
| Phone: 785-575-8135 Fax:                                                       | Project Name:                              |                             | Pace Project<br>Manager:                      | Heather Wilson 913                                                                                | -563-1407                                                                | Site Location    | KS       |                         |                          |                                |                           |
| Requested Due Date/TAT: 7 day                                                  | Project Number                             |                             | Pace Profile #:                               | 9655, 1                                                                                           |                                                                          | STATE:           |          | — K                     |                          |                                |                           |
|                                                                                |                                            |                             |                                               |                                                                                                   | Requested                                                                | Analysis Filtere | d (Y/N)  |                         |                          |                                |                           |
| Section D Valid Matrix Required Client Information MATRIX DRINKING WATER WATER | CODE DE NO                                 | COLLECTED                   | NO                                            | Preservatives                                                                                     | Z                                                                        |                  |          |                         |                          |                                |                           |
| WASTE WATER WASTE WATER PRODUCT SOILSOULD OIL SAMPLE ID WIPE                   | WW P COMP                                  | OSITE COMPOSITE RT END/GRAB | T COLLECTION<br>ERS                           |                                                                                                   | Test# Metals* Metals** Hg                                                |                  |          | rine (Y/N)              |                          |                                |                           |
| (A-Z, 0-9 / ,-) AIR OTHER Sample IDS MUST BE UNIQUE TISSUE                     | 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4    |                             | SAMPLE TEMP AT CO # OF CONTAINERS Unpreserved | HNO <sub>3</sub> HNO <sub>3</sub> HCI NaOH Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Methanol | ## Analysis Test# 200.7 Total Metals* 200.8 Total Metals* 245.1 Total Hg | H+B<br>C TDS     |          | Residual Chlorine (Y/N) | 603<br>Page              | 2364<br>Project No             | / <b>/</b><br>./ Lab I.D. |
|                                                                                |                                            | TIME DATE TIME              | 3 X                                           | X                                                                                                 | XXX                                                                      |                  | 28011    |                         | A                        | 110,0001110                    | 3                         |
| 1 Mw-37-120619                                                                 | WT 12/6                                    | 1045                        | 3 X                                           |                                                                                                   | 文文                                                                       |                  | 1        |                         | APP                      | . 10                           | 20                        |
| 2 MW-38-120619                                                                 |                                            | 1200                        | 31                                            |                                                                                                   | XX                                                                       |                  |          |                         | (110                     | 01                             | 1/4                       |
| 100 1-1 120110                                                                 | WT 12/6                                    | 1300                        | 3 X                                           |                                                                                                   | XX                                                                       |                  |          |                         |                          | _0.                            |                           |
| 100 30 100 11                                                                  | WH 12/6                                    | 140                         | 3 X                                           |                                                                                                   | 文文                                                                       |                  |          |                         |                          |                                |                           |
| 1-1 0 - 1-1/10                                                                 | WT 126                                     | 1415                        | 32                                            |                                                                                                   | KX                                                                       |                  |          |                         |                          |                                |                           |
| 10 1 11 10 2 11 15                                                             | WT 12/6                                    |                             | 3 X                                           | X                                                                                                 | XX                                                                       | 1                | 1        |                         |                          |                                |                           |
| 111 14 12 1000 11                                                              | 101 1010                                   | 12 0                        |                                               |                                                                                                   |                                                                          |                  |          |                         |                          |                                |                           |
| 8                                                                              |                                            |                             |                                               |                                                                                                   |                                                                          |                  |          |                         |                          |                                |                           |
| 10                                                                             |                                            |                             |                                               |                                                                                                   |                                                                          |                  |          |                         |                          |                                |                           |
| 11                                                                             |                                            |                             |                                               |                                                                                                   |                                                                          |                  |          |                         |                          |                                |                           |
| 12                                                                             |                                            |                             |                                               |                                                                                                   |                                                                          |                  |          | Ш                       |                          |                                |                           |
| ADDITIONAL COMMENTS                                                            | RELINQUISHED BY                            | / AFFILIATION DA            | TE TIME                                       | ACCEPTE                                                                                           | D BY / AFFILIATION                                                       | DATE             | TIME     |                         | SAMP                     | LE CONDITIO                    | NS                        |
| 200.7 Total Metals*: B, Ca,Ba, Be, Cr, Pb, Li                                  |                                            |                             |                                               | Chry                                                                                              | MSE                                                                      | 12/9/19          | 1610     | 21                      | У                        | N                              | y                         |
| 200.8 Total Metals** Sb, As, Cd, Co, Mo, Se, Tl                                |                                            |                             |                                               | 1                                                                                                 |                                                                          |                  |          | 2.8                     | X                        | N                              | Y                         |
|                                                                                |                                            |                             |                                               |                                                                                                   |                                                                          |                  |          |                         |                          |                                |                           |
| Page                                                                           |                                            | CAMPLED NAME AND SIG        | NATURE                                        |                                                                                                   |                                                                          |                  | _= 7 Z Z |                         | _                        | led ()                         | t                         |
| 9<br>20                                                                        |                                            | SAMPLER NAME AND SIG        |                                               |                                                                                                   |                                                                          |                  |          | o ii                    | ved on<br>Y/N)           | / Seal                         | s Inte<br>(N)             |
| 20 of 21                                                                       |                                            | SIGNATURE of SAM            |                                               |                                                                                                   | DATE Signer<br>(MM/DD/YY)                                                |                  |          | Temp in                 | Received or<br>Ice (Y/N) | Custody Sealed<br>Cooler (Y/N) | Samples Intact<br>(Y/N)   |

# Pace Container Order #569726

| Order B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                    |                                               |                                                                            |            |         |                        |                                                       |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|------------|---------|------------------------|-------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Зу:                                                                                                             |                                                                                                                                                                                                    | Ship 1                                        | Го :                                                                       |            |         | Retur                  | 1 То:                                                 |           |
| Company E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evergy Kans                                                                                                     | as Central, Inc.                                                                                                                                                                                   | Company                                       | Haley & Aldrich                                                            |            |         | Company                | Pace Analytical Kans                                  | sas       |
| Contact K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kneeling, Ad                                                                                                    | am                                                                                                                                                                                                 | Contact                                       | Misha Miller-Gilmon                                                        | е          |         | Contact                | Wilson, Heather                                       |           |
| Email a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | akneeling@h                                                                                                     | naleyaldrich.com                                                                                                                                                                                   | Email                                         | 2                                                                          |            |         | Email                  | heather.wilson@pac                                    | elabs.com |
| Address 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 E. Van B                                                                                                    | Buren St                                                                                                                                                                                           | Address                                       | 11020 King St                                                              |            |         | Address                | 9608 Loiret Blvd.                                     |           |
| Address 2 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Suite 545                                                                                                       |                                                                                                                                                                                                    | Address 2                                     | Suite 450                                                                  |            |         | Address 2              |                                                       |           |
| City F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phoenix                                                                                                         |                                                                                                                                                                                                    | City                                          | Overland Park                                                              |            |         | City                   | Lenexa                                                |           |
| State A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AZ Z                                                                                                            | ip 85004                                                                                                                                                                                           | State                                         | KS Zip 662                                                                 | 10         |         | State                  | KS Zip 6621                                           | 9         |
| Phone (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (602)760-242                                                                                                    | 24                                                                                                                                                                                                 | Phone                                         | (913) 242-5491                                                             |            |         | Phone                  | 1(913)563-1407                                        |           |
| Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                               |                                                                                                                                                                                                    |                                               |                                                                            |            |         |                        |                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | CCR- App III & IV (Lenexa)                                                                                                                                                                         | Due Date                                      | 12/02/2019                                                                 | Profi      | e 9655, | 1                      | Quote                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oject Wilson                                                                                                    |                                                                                                                                                                                                    | Return                                        |                                                                            |            |         | Economical             | Locatio KS                                            |           |
| PIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OJECT WISO                                                                                                      | n, Heather                                                                                                                                                                                         | Ketuiii                                       |                                                                            | Carri      | IVIOSI  | Economical             | 200410 173                                            |           |
| Trip Bla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anks                                                                                                            |                                                                                                                                                                                                    | _                                             | Bottle Labels                                                              | -          |         | Bo                     | ttles —                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | clude Trip Bla                                                                                                  | anks                                                                                                                                                                                               | ) (                                           | Blank                                                                      |            |         |                        | Boxed Cases                                           |           |
| □ "10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | ····-                                                                                                                                                                                              |                                               | X Pre-Printed                                                              | No Samp    | le IDs  |                        | Individually Wrappe                                   | ed        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                    | - 14                                          | Pre-Printed                                                                |            |         |                        | Grouped By Sample                                     | e         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                    | )                                             |                                                                            |            |         |                        |                                                       |           |
| - Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Shipping                                                                                                      | Labels                                                                                                                                                                                             | $\overline{}$                                 | / Misc /                                                                   |            |         |                        |                                                       |           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shipper                                                                                                         | ,                                                                                                                                                                                                  | ) (                                           | Sampling In:                                                               | structions |         |                        | Extra Bubble V                                        | Vran      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | th Shipper                                                                                                      |                                                                                                                                                                                                    |                                               | X Custody Sea                                                              |            |         |                        | Short Hold/Rus                                        | · ·       |
| h—1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                    | /                                             | X Temp. Blank                                                              |            |         |                        | H                                                     | er(s)     |
| - coc c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Options —                                                                                                       |                                                                                                                                                                                                    | $\neg$                                        | X Coolers                                                                  |            |         |                        | USDA Regulat                                          |           |
| Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ımber of Blar                                                                                                   | nks                                                                                                                                                                                                |                                               | Syringes                                                                   |            |         |                        | 1                                                     |           |
| X Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e-Printed                                                                                                       | 1                                                                                                                                                                                                  |                                               |                                                                            |            |         |                        | 1                                                     | J         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                    |                                               |                                                                            |            |         |                        |                                                       |           |
| of Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s Matrix                                                                                                        | Test                                                                                                                                                                                               | Containe                                      | er                                                                         | Total      | # of    | Lot#                   | Notes                                                 |           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WT                                                                                                              | Metals                                                                                                                                                                                             | 1-1L plasti                                   | c w/HNO3                                                                   | 7          | 0       | 100719-2EIZ            |                                                       |           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WT                                                                                                              | 300.0 Anions/pH                                                                                                                                                                                    | 1L plastic                                    | Inpreserved                                                                | 7          | 0       | 102819-2AED            |                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                               |                                                                                                                                                                                                    |                                               |                                                                            | 1          | +       |                        |                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WT                                                                                                              | TDS by 2540C                                                                                                                                                                                       | 1L Plastic                                    | Unpres.                                                                    | 7          | 0       | 102819-2AED            |                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОТ                                                                                                              |                                                                                                                                                                                                    |                                               | Unpres.                                                                    | 7          | 0       | 102819-2AED            |                                                       |           |
| ample receivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oT  zard Shi                                                                                                    | TDS by 2540C<br>FEDEX Prepaid Return-Lenexa                                                                                                                                                        | None                                          | NO                                                                         | 0          | 0       | LAB                    | USE:<br>Ship Date :                                   |           |
| T<br>1<br>1<br>Ample receivi<br>h your project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zard Shi<br>ring hours arct manager.                                                                            | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  Pping Placard In Fe Mon-Fri 7:00am-6:00pm and                                                                                                        | Place:                                        | NO<br>am-2:00pm unless sp                                                  | o o        | 0       | LAB                    | Ship Date :<br>Prepared By:                           |           |
| Haz ample receivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zard Shi<br>ving hours are<br>ct manager.<br>al reserves th                                                     | TDS by 2540C FEDEX Prepaid Return-Lenexa lab                                                                                                                                                       | Place: I                                      | NO<br>am-2:00pm unless sp                                                  | o o        | angemen | LAB                    | Ship Date :                                           |           |
| Haz<br>ample receivin your projectice Analytication and the control of the control o | zard Shi<br>ring hours and the manager.<br>al reserves the reserves the are net 30 de                           | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  pping Placard In Fe Mon-Fri 7:00am-6:00pm are the right to return hazardous, the right to charge for unused lays.                                    | Place: I                                      | NO<br>am-2:00pm unless sp<br>floactive samples to<br>well as cost associat | o o        | angemen | LAB                    | Ship Date :<br>Prepared By:                           |           |
| Haz<br>imple receivi<br>n your projectice Analytica<br>ice Analytica<br>iyment term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zard Shi<br>ring hours and the manager.<br>al reserves the reserves the are net 30 de                           | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  Pping Placard In Fe Mon-Fri 7:00am-6:00pm are the right to return hazardous, the right to charge for unused                                          | Place: I                                      | NO<br>am-2:00pm unless sp<br>floactive samples to<br>well as cost associat | o o        | angemen | LAB                    | Ship Date :<br>Prepared By:                           |           |
| Haz<br>imple receivi<br>i your projectice Analytica<br>ice Analytica<br>iyment term<br>ease include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zard Shi<br>ving hours and the manager.<br>all reserves the are net 30 de the proposa                           | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  pping Placard In Fe Mon-Fri 7:00am-6:00pm are the right to return hazardous, the right to charge for unused lays.                                    | Place: I                                      | NO<br>am-2:00pm unless sp<br>floactive samples to<br>well as cost associat | o o        | angemen | <b>LAB</b> ts are made | Ship Date :<br>Prepared By:                           |           |
| Haz<br>mple receivi<br>n your projec<br>ice Analytica<br>ce Analytica<br>yment term<br>case include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zard Shi<br>ving hours are<br>ct manager.<br>al reserves the<br>al reserves the<br>are net 30 de<br>the propose | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  pping Placard In Fe Mon-Fri 7:00am-6:00pm are the right to return hazardous, the right to charge for unused lays.                                    | Place: I                                      | NO<br>am-2:00pm unless sp<br>floactive samples to<br>well as cost associat | o o        | angemen | <b>LAB</b> ts are made | Ship Date :<br>Prepared By:<br>Verified By:           | Skylar    |
| Haz ample receivin your project ace Analyticate Analyt    | zard Shi<br>ving hours and to manager.<br>al reserves the are net 30 de the proposa<br>mple                     | TDS by 2540C FEDEX Prepaid Return-Lenexa lab  Pping Placard In Fee Mon-Fri 7:00am-6:00pm are right to return hazardous, the right to charge for unused lays.  al number on the chain of customers. | Place: Id Sat 8:00a toxic, or rac bottles, as | NO<br>am-2:00pm unless sp<br>floactive samples to<br>well as cost associat | o o        | angemen | <b>LAB</b> ts are made | Ship Date : Prepared By: Verified By: USE (Optional): | Skylar    |



January 02, 2020

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

RE: Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

## Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on December 09, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the December 27, 2019 report. This project was revised on January 2, 2020 to correct the Radium Sum Calculation as per client specifications. (Greensburg, PA)

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

diantos m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

**Enclosures** 

cc: Bob Beck, Kansas City Power & Light Company
HEATH HORYNA, WESTAR ENERGY
Andrew Hare, KCP&L and Westar, Evergy Companies
Laura Hines, KCP&L & Westar, Evergy Companies
Jake Humphrey, KCP&L and Westar, Evergy Companies

Tabitha Hylton, KCP&L & Westar, Evergy Companies Samantha Kaney, Haley & Aldrich JARED MORRISON, KCP&L and Westar, Evergy Companies Melissa Michels, KCP&L & Westar, Evergy Companies Danielle Zinmaster, Haley & Aldrich



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



## **CERTIFICATIONS**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



## **SAMPLE SUMMARY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60323761001 | MW-37_120619 | Water  | 12/06/19 09:25 | 12/09/19 17:15 |
| 60323761002 | MW-38_120619 | Water  | 12/06/19 10:45 | 12/09/19 17:15 |
| 60323761003 | MW-K_120619  | Water  | 12/06/19 12:00 | 12/09/19 17:15 |
| 60323761004 | MW-L_120619  | Water  | 12/06/19 13:00 | 12/09/19 17:15 |
| 60323761005 | MW-39_120619 | Water  | 12/06/19 14:10 | 12/09/19 17:15 |
| 60323761006 | DUP_120619   | Water  | 12/06/19 14:15 | 12/09/19 17:15 |
| 60323761007 | MW-40 120619 | Water  | 12/06/19 15:40 | 12/09/19 17:15 |



## **SAMPLE ANALYTE COUNT**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Lab ID      | Sample ID        | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|--------------------------|----------|----------------------|------------|
| 60323761001 | <br>MW-37_120619 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761002 | MW-38_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761003 | MW-K_120619      | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761004 | MW-L_120619      | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761005 | MW-39_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761006 | DUP_120619       | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761007 | MW-40_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-37_120619</b> PWS: | <b>Lab ID: 6032376</b><br>Site ID: | 1001 Collected: 12/06/19 09:25<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|----------------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                       | EPA 903.1                          | 0.000 ± 0.370 (0.782)<br>C:NA T:84%            | pCi/L     | 12/26/19 11:45 | 13982-63-3    |      |
| Radium-228                       | EPA 904.0                          | 0.0414 ± 0.424 (0.967)<br>C:78% T:80%          | pCi/L     | 12/26/19 15:13 | 3 15262-20-1  |      |
| Total Radium                     | Total Radium<br>Calculation        | 0.0414 ± 0.563 (0.967)                         | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

Sample: MW-38\_120619 Lab ID: 60323761002 Collected: 12/06/19 10:45 Received: 12/09/19 17:15 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 903.1 0.281 ± 0.399 (0.676) Radium-226 pCi/L 12/26/19 11:45 13982-63-3 C:NA T:92% EPA 904.0 1.56 ± 0.642 (1.08) Radium-228 pCi/L 12/26/19 15:19 15262-20-1 C:79% T:76% Total Radium Total Radium  $1.84 \pm 0.756$  (1.08) pCi/L 01/02/20 10:23 7440-14-4 Calculation



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-K_120619</b> PWS: | <b>Lab ID: 6032376</b> Site ID: | 1003 Collected: 12/06/19 12:00<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|---------------------------------|---------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                      | Method                          | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                      | EPA 903.1                       | 0.0680 ± 0.400 (0.816)<br>C:NA T:76%           | pCi/L     | 12/26/19 11:45 | 13982-63-3    |      |
| Radium-228                      | EPA 904.0                       | 0.479 ± 0.529 (1.12)<br>C:74% T:79%            | pCi/L     | 12/26/19 15:19 | 9 15262-20-1  |      |
| Total Radium                    | Total Radium<br>Calculation     | 0.547 ± 0.663 (1.12)                           | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: MW-L_120619<br>PWS: | <b>Lab ID: 603237</b> Site ID: | 61004 Collected: 12/06/19 13:00<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-----------------------------|--------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                         | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                  | EPA 903.1                      | -0.166 ± 0.421 (0.924)<br>C:NA T:91%            | pCi/L     | 12/26/19 11:4  | 13982-63-3    |      |
| Radium-228                  | EPA 904.0                      | 0.482 ± 0.471 (0.980)<br>C:78% T:84%            | pCi/L     | 12/26/19 15:1  | 9 15262-20-1  |      |
| Total Radium                | Total Radium<br>Calculation    | 0.482 ± 0.632 (0.980)                           | pCi/L     | 01/02/20 10:2  | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

Sample: MW-39\_120619 Lab ID: 60323761005 Collected: 12/06/19 14:10 Received: 12/09/19 17:15 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 903.1 0.107 ± 0.363 (0.700) Radium-226 pCi/L 12/26/19 11:45 13982-63-3 C:NA T:91% EPA 904.0  $0.653 \pm 0.501 \quad (1.01)$ 12/26/19 15:19 15262-20-1 Radium-228 pCi/L C:77% T:84% Total Radium Total Radium  $0.760 \pm 0.619$  (1.01) pCi/L 01/02/20 10:23 7440-14-4 Calculation



# **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: DUP_120619<br>PWS: | <b>Lab ID</b> : <b>6032376</b><br>Site ID: | 61006 Collected: 12/06/19 14:15<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|----------------------------|--------------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                                     | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                 | EPA 903.1                                  | -0.0492 ± 0.225 (0.530)<br>C:NA T:99%           | pCi/L     | 12/26/19 11:45 | 13982-63-3    |      |
| Radium-228                 | EPA 904.0                                  | -0.108 ± 0.402 (0.943)<br>C:82% T:80%           | pCi/L     | 12/26/19 15:13 | 3 15262-20-1  |      |
| Total Radium               | Total Radium Calculation                   | 0.000 ± 0.461 (0.943)                           | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



# **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-40_120619</b> PWS: | <b>Lab ID: 603237</b> 0 Site ID: | 61007 Collected: 12/06/19 15:40<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|----------------------------------|----------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                           | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                       | EPA 903.1                        | 0.307 ± 0.401 (0.662)<br>C:NA T:79%             | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                       | EPA 904.0                        | 0.605 ± 0.464 (0.929)<br>C:80% T:82%            | pCi/L     | 12/26/19 15:14 | 4 15262-20-1  |      |
| Total Radium                     | Total Radium Calculation         | 0.912 ± 0.613 (0.929)                           | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

QC Batch: 375684 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60323761001, 60323761002, 60323761003, 60323761004, 60323761005, 60323761006, 60323761007

METHOD BLANK: 1822421 Matrix: Water

Associated Lab Samples: 60323761001, 60323761002, 60323761003, 60323761004, 60323761005, 60323761006, 60323761007

ParameterAct  $\pm$  Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-2280.0624  $\pm$  0.271 (0.618) C:78% T:95%pCi/L12/26/19 15:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

QC Batch: 375685 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60323761001, 60323761002, 60323761003, 60323761004, 60323761005, 60323761006, 60323761007

METHOD BLANK: 1822422 Matrix: Water

Associated Lab Samples: 60323761001, 60323761002, 60323761003, 60323761004, 60323761005, 60323761006, 60323761007

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.0398 ± 0.206 (0.428) C:NA T:92% pCi/L 12/26/19 11:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **LABORATORIES**

Date: 01/02/2020 11:06 AM

PASI-PA Pace Analytical Services - Greensburg



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

Date: 01/02/2020 11:06 AM

| Lab ID      | Sample ID    | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|--------------------------|----------|-------------------|---------------------|
| 60323761001 | MW-37_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761002 | MW-38_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761003 | MW-K_120619  | EPA 903.1                | 375685   |                   |                     |
| 60323761004 | MW-L_120619  | EPA 903.1                | 375685   |                   |                     |
| 60323761005 | MW-39_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761006 | DUP_120619   | EPA 903.1                | 375685   |                   |                     |
| 60323761007 | MW-40_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761001 | MW-37_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761002 | MW-38_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761003 | MW-K_120619  | EPA 904.0                | 375684   |                   |                     |
| 60323761004 | MW-L_120619  | EPA 904.0                | 375684   |                   |                     |
| 60323761005 | MW-39_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761006 | DUP_120619   | EPA 904.0                | 375684   |                   |                     |
| 60323761007 | MW-40_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761001 | MW-37_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761002 | MW-38_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761003 | MW-K_120619  | Total Radium Calculation | 377482   |                   |                     |
| 60323761004 | MW-L_120619  | Total Radium Calculation | 377482   |                   |                     |
| 60323761005 | MW-39_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761006 | DUP_120619   | Total Radium Calculation | 377482   |                   |                     |
| 60323761007 | MW-40_120619 | Total Radium Calculation | 377482   |                   |                     |



# **CHAIN-OF-CUSTODY / Analytical Request Document**

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fleids must be completed accurately.

| Section A Required Client Information:      | Section B<br>Required Project Information:                  |                                  |                    | ection                                                                      | n C<br>Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                                         |                           |          | Page:                                            | :                                            | of                             |                         |
|---------------------------------------------|-------------------------------------------------------------|----------------------------------|--------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|---------------------------|----------|--------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------|
| Company: WESTAR ENERGY                      | Report To: Brandon Graffin                                  | Adam Kneeli-                     |                    | ttention                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | ***********                             | 1                         |          | L                                                |                                              |                                |                         |
| Address: 818 Kansas Ave                     | Copy To: Jared Morrison                                     | 10100 (1                         |                    | ompan:                                                                      | ny Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                         | REGULATOR                 | YAGENO   | v .                                              | . *                                          | . et la peta                   |                         |
| Topeka KS 66612<br>AKBEELINA@haleyald       | ich. con                                                    |                                  | Ac                 | ddress:                                                                     | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                         | NPDES                     |          |                                                  | ER 🗆                                         | DRINKING                       | WATER                   |
| Email To: brandon kgriffin@westarenergy.com | Purchase Order No.: 10LEC-                                  | 0000015648                       |                    | ace Quo                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         | 1                         | RCRA     |                                                  |                                              | OTHER                          | VVAICK                  |
| Phone: 785-575-8135 Fax:                    | Project Name;                                               |                                  | Pa                 | eference<br>ace Proje                                                       | ject Heather Wilson 913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-563-140                        | )7                                      | Site Location             | INCINA   |                                                  | <i>/////////////////////////////////////</i> | 7////////                      |                         |
| Requested Due Date/TAT: 15 day              | Project Number;                                             |                                  |                    | lanager:<br>ace Profi                                                       | :<br>* <sup>file #:</sup> 9655, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                         | Burn Barrell              | K        | 5                                                |                                              |                                |                         |
|                                             |                                                             |                                  | Щ.                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | aguagtad.                               | STATE:<br>Analysis Filter |          | - K//                                            |                                              |                                |                         |
| Section D Valid Matrix C                    | indes 🖘 🔾                                                   |                                  | П                  | $\top$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | equesteu                                | Analysis Filter           | ea (TIN) | T-V//                                            |                                              |                                |                         |
| Required Client Information MATRIX          | CODE 9 K                                                    | COLLECTED                        |                    | L                                                                           | Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                              |                                         |                           |          |                                                  |                                              |                                |                         |
| DRINKING WATER<br>WATER<br>WASTE WATER      | WT S S S COME                                               | POSITE COMPOSITE                 | ō<br>N             |                                                                             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | *************************************** |                           |          |                                                  |                                              |                                |                         |
| PRODUCT<br>SOLISOLID                        |                                                             | POSITE COMPOSITE<br>ART END/GRAB | COLLECTION         |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         |                           |          | Ιĝ                                               | 1                                            |                                |                         |
| SAMPLE ID OIL WIPE                          | or as a                                                     |                                  | 8                  | 22                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | est                              |                                         |                           |          | Residual Chlorine (Y/N)                          |                                              |                                |                         |
| (A-Z, 0-9 / ,-) AIR OTHER                   | ~ <u>``</u>   ш                                             |                                  | P AT               | CONTAINERS                                                                  | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | اع اھ                                   |                           |          | jë                                               |                                              |                                |                         |
| Sample IDs MUST BE UNIQUE TISSUE            | CCODE TYPE                                                  |                                  | TEMP               | TN Para                                                                     | H <sub>2</sub> SO <sub>4</sub> H <sub>2</sub> SO <sub>4</sub> HNO <sub>3</sub> HCI NaOH Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Methanol Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'sis                             | g   - 73                                |                           |          | 5                                                |                                              |                                |                         |
| LIEM                                        | MATRIX<br>SAMPLE 1                                          |                                  |                    | CC<br>Fest                                                                  | S <sub>2</sub> O | [표]                              | 틢                                       |                           |          | idua                                             |                                              |                                |                         |
| _ 🖺 📗                                       | MA NO DATE                                                  | TIME DATE TIME                   | SAMPL              | # OF                                                                        | Unpreser<br>H <sub>2</sub> SO <sub>4</sub><br>HNO <sub>3</sub><br>HCI<br>NaOH<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Methanol<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>↓Analysis</b> 1<br>Radium-226 | Radium-228<br>Total Radium              |                           |          | Res                                              | Pace                                         | Project N                      | o./ Lab I.D.            |
| MW-37_120619                                | WT 12/6                                                     | 925                              | 6                  | $\overline{\chi}$                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                | XX                                      |                           |          |                                                  | <i>/</i> *                                   |                                |                         |
| 22 MW-38-120619'                            | WT 12/6                                                     | 1045                             |                    | 2                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | XX                                      |                           |          |                                                  | 2                                            | $\overline{}$                  |                         |
| 13 MW-K-120619                              | WT 12/6                                                     | 1200                             | Ž                  | Ž.                                                                          | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 人                                | XX                                      | (At                       | b b./    | IM                                               | M Bd                                         | VA                             |                         |
| 14 MW-L-120619                              | WH 12/6                                                     | 1300                             | Ĭ                  | 2                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 区                                | XX                                      |                           | UY .     |                                                  | K                                            |                                |                         |
| 5 MW-39-120619                              | WT 12/6                                                     | 140                              |                    | 2                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K                                | XX                                      |                           | 1        | 7                                                |                                              |                                | 1                       |
| 26 Dup-120619                               | Wt 12/6                                                     | 1415                             |                    | 2                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | $\times$                                |                           |          |                                                  | 100                                          | $\rho$ $\Box$                  | $T \setminus I$         |
| 7 MW-40-17-0619                             | wt 12/6                                                     | 1540                             | 2                  |                                                                             | l X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 스                                | XX                                      |                           |          |                                                  | 17 4/                                        | <u> </u>                       |                         |
| 70 ·                                        |                                                             |                                  | $oldsymbol{\perp}$ |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         |                           |          |                                                  |                                              | 01                             | ΝУ                      |
| ¥ 9                                         |                                                             |                                  | -                  | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         |                           |          | <del>                                     </del> |                                              |                                |                         |
| 10                                          |                                                             |                                  |                    | _                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                |                                         |                           |          |                                                  |                                              |                                |                         |
| <u> </u>                                    |                                                             |                                  |                    | -                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         |                           |          |                                                  | 1                                            |                                |                         |
| ADDITIONAL COMMENTS                         | RELINQUISHED BY                                             | /AFFILIATION DATE                | <b>—</b>           |                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                         |                           |          |                                                  | L                                            |                                |                         |
| ADDITIONAL COMMENTS                         |                                                             |                                  |                    | TIME                                                                        | 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BY / AFF                         |                                         | DATE                      | TIME     |                                                  | _                                            | LE CONDITI                     | ONS                     |
|                                             | 1210 red                                                    | 12/0                             | <u> 26 (</u>       | <u>ત્ર</u>                                                                  | 009~1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | PAU                                     | 12/9/19                   | 1715     |                                                  | N                                            | <u> </u>                       | 4                       |
|                                             |                                                             |                                  |                    |                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                         |                           |          |                                                  |                                              | 1.                             | •                       |
|                                             | <u> </u>                                                    |                                  | ļ                  |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                         |                           |          |                                                  |                                              |                                |                         |
|                                             |                                                             |                                  |                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********                         |                                         |                           |          | <u> </u>                                         |                                              |                                |                         |
| P                                           |                                                             | SAMPLER NAME AND SIGNAT          | TURE               | F                                                                           | el: Fredrichs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an                               | 90                                      | 150                       |          |                                                  | <u> </u>                                     | pel Ç                          | act                     |
| Page                                        |                                                             | PRINT Name of SAMPLE             | _ER:               | E.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254                              |                                         | ~ ~ <i>v</i>              | /        | Temp in °C                                       | Received on<br>Ice (Y/N)                     | Custody Sealed<br>Cooler (Y/N) | Samples intact<br>(Y/N) |
| 16 c                                        |                                                             | SIGNATURE of SAMPLE              | ER:                | Ģ.                                                                          | 1 2 d 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA DA                            | TE Signed                               | 17/06                     | 119      | Tem                                              | Recei<br>Ice (                               | Soole                          | ample<br>(Y,            |
| of<br>2                                     | SIGNATURE of SAMPLER: ELITA DATE Signed (MM/DD/YY): 17/06/1 |                                  |                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ι                                | <u></u>                                 | L -                       | ່ວັ      | ΐ                                                |                                              |                                |                         |

|                                                | ab Sample Condi                       |                                              | <b>-</b> |          |                                                     |
|------------------------------------------------|---------------------------------------|----------------------------------------------|----------|----------|-----------------------------------------------------|
| Pace Analytical                                | Client Name:                          | W                                            | Lst      | a        | Project #                                           |
| Courier A Fed Ex                               | ]UPS □USPS □Clien                     | · 🗅                                          | ommai    | rcial    | Pace Other Label                                    |
| Tracking #: 1215                               | 2913 You                              |                                              | -        | olai     | LIMS Login                                          |
| Custody Seal on Cooler                         | /Box Present: //yes                   | n                                            | 0        | Seals    | intact: yes no                                      |
| Thermometer Used                               |                                       | Туре                                         | of Ice:  | Wet      | Blue (None)                                         |
| Cooler Temperature                             | Observed Temp                         |                                              | °C       | Corre    | ection Factor: °C Final Temp: °C                    |
| Temp should be above freez                     | zing to 6°C                           |                                              |          |          | pH paper Lot# Date and Initials of person examining |
| Comments:                                      |                                       | Yes                                          | No       | N/A      | Contents: 12 Hate of                                |
| Chain of Custody Presen                        | t:                                    |                                              |          |          | 1.                                                  |
| Chain of Custody Filled C                      | Out:                                  |                                              |          |          | 2.                                                  |
| Chain of Custody Relinqu                       | ished:                                |                                              | <u> </u> |          | 3.                                                  |
| Sampler Name & Signatu                         | re on COC:                            |                                              |          |          | 4.                                                  |
| Sample Labels match CC                         | OC:                                   |                                              |          |          | 5.                                                  |
| -Includes date/time/ID                         | Matrix:                               | <u> </u>                                     |          |          |                                                     |
| Samples Arrived within H                       | old Time:                             |                                              |          |          | 6.                                                  |
| Short Hold Time Analys                         | is (<72hr remaining):                 |                                              |          | <u> </u> | 7.                                                  |
| Rush Turn Around Time                          | Requested:                            |                                              |          |          | 8.                                                  |
| Sufficient Volume:                             |                                       |                                              | Ì        |          | 9.                                                  |
| Correct Containers Used:                       |                                       |                                              |          |          | 10.                                                 |
| -Pace Containers Use                           | d:                                    |                                              |          |          |                                                     |
| Containers Intact:                             |                                       |                                              |          |          | 11.                                                 |
| Orthophosphate field filter                    | red                                   |                                              |          |          | 12.                                                 |
| lex Cr Aqueous sample t                        | field filtered                        |                                              |          |          | 13.                                                 |
| Organic Samples chec                           | ked for dechlorination:               |                                              |          |          | 14.                                                 |
| Filtered volume received                       |                                       | <u> </u>                                     | _        |          | 15,                                                 |
| All containers have been che                   | •                                     |                                              |          |          | 16.                                                 |
| exceptions: VOA, colifor<br>Non-aqueous matrix | m, TOC, O&G, Phenolics,               | Radon,                                       |          |          | 16. phv2                                            |
| All containers meet metho                      | od preservation                       |                                              |          |          | Initial when 13 Date/time of                        |
| requirements.                                  |                                       | <u>                                     </u> |          |          | completed VV2 preservation                          |
|                                                |                                       | T                                            |          |          | preservative                                        |
| Headspace in VOA Vials                         | ( >6mm):                              |                                              |          |          | 17.                                                 |
| Trip Blank Present:                            |                                       |                                              |          |          | 18.                                                 |
| Trip Blank Custody Seals                       |                                       | <u> </u>                                     |          | _        | (Initial urbon                                      |
| Rad Samples Screened                           | < v.5 mrem/nr                         |                                              |          |          | Initial when completed: Date: 12/10/19              |
| Client Notification/ Reso                      | lution:                               |                                              |          |          | • • • • • • • • • • • • • • • • • • • •             |
| Person-Contacted:                              |                                       |                                              |          | Date/    | Fime:Gontacted By:                                  |
| Comments/ Resolution:                          | · · · · · · · · · · · · · · · · · · · |                                              |          |          |                                                     |
| Commentar (Caolada).                           |                                       |                                              |          |          |                                                     |
| Commence (Coording)                            |                                       |                                              |          |          |                                                     |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

 $\square$  A check in this box indicates that additional information has been stored in ereports.

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.



# **Quality Control Sample Performance Assessment**

#### Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Test:     | Ra-226     |
|-----------|------------|
| Analyst:  | MK1        |
| Date:     | 12/17/2019 |
| Batch ID: | 51478      |
| Matrix:   | ÐW         |

| Method Blank Assessment             |         |
|-------------------------------------|---------|
| MB Sample ID                        | 1822422 |
| MB concentration:                   | 0.040   |
| M/B Counting Uncertainty:           | 0.206   |
| MB MDC:                             | 0.428   |
| MB Numerical Performance Indicator: | 0.38    |
| MB Status vs Numerical Indicator:   | N/A     |
| MB Status vs. MDC:                  | Pass    |

| Laboratory Control Sample Assessment         | LCSD (Y or N)? | N .       |
|----------------------------------------------|----------------|-----------|
|                                              | LCS51478       | LCSD51478 |
| Count Date:                                  | 12/26/2019     |           |
| Spike I.D.:                                  | 19-022         |           |
| Spike Concentration (pCi/mL):                | 32.114         |           |
| Volume Used (mL):                            | 0.10           |           |
| Aliquot Volume (L, g, F):                    | 0.650          |           |
| Target Conc. (pCi/L, g, F):                  | 4.944          |           |
| Uncertainty (Calculated):                    | 0.232          |           |
| Result (pCi/L, g, F):                        |                |           |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F); | 0.951          |           |
| Numerical Performance Indicator:             | -1.51          |           |
| Percent Recovery:                            |                |           |
| Status vs Numerical Indicator:               |                |           |
| Status vs Recovery:                          |                |           |
| Upper % Recovery Limits:                     |                |           |
| Lower % Recovery Limits:                     | 73%            |           |

| Sample Matrix Spike Control Assessment                            | MS/MSD 1      | MS/MSD 2 |
|-------------------------------------------------------------------|---------------|----------|
| Sample Collection Date:                                           | 12/9/2019     |          |
| Sample I.D.                                                       | 30339692001   |          |
| Sample MS I.D.                                                    | 30339692001MS |          |
| Sample MSD I.D.                                                   |               |          |
| Spike I.D.:                                                       | 19-022        |          |
| MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 32.115        |          |
| Spike Volume Used in MS (mL):                                     | 0.20          |          |
| Spike Volume Used in MSD (mL):                                    |               |          |
| MS Aliquot (L, g, F):                                             | 0.664         |          |
| MS Target Conc.(pCî/L, g, F):                                     | 9.676         |          |
| MSD Aliquot (L, g, F):                                            |               |          |
| MSD Target Conc. (pCi/L, g, F):                                   |               |          |
| MS Spike Uncertainty (calculated):                                | 0.455         |          |
| MSD Spike Uncertainty (calculated):                               |               |          |
| Sample Result:                                                    | -0.040        |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.137         |          |
| Sample Matrix Spike Result:                                       | 12.089        |          |
| Matrix Spike Result Counting Uncertainty (pCl/L, g, F):           | 1.519         |          |
| Sample Matrix Spike Duplicate Result:                             |               |          |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |               |          |
| MS Numerical Performance Indicator:                               | 3.022         |          |
| MSD Numerical Performance Indicator:                              |               |          |
| MS Percent Recovery:                                              | 125.36%       |          |
| MSD Percent Recovery:                                             |               |          |
| MS Status vs Numerical Indicator:                                 | N/A           |          |
| MSD Status vs Numerical Indicator:                                |               |          |
| MS Status vs Recovery:                                            | Pass          |          |
| MSD Status vs Recovery:                                           |               |          |
| MS/MSD Upper % Recovery Limits:                                   | 136%          |          |
| MS/MSD Lower % Recovery Limits:                                   | 71%           |          |

| Duplicate Sample Assessment                                 |                |                  |
|-------------------------------------------------------------|----------------|------------------|
| Sample I.D.:                                                | 30339683001    | Enter Duplicate  |
| Duplicate Sample I.D.                                       | 30339683001DUP | sample IDs if    |
| Sample Result (pCi/L, g, F):                                | 0.680          | other than       |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 0.402          | LCS/LCSD in      |
| Sample Duplicate Result (pCi/L, g, F):                      | 0.266          | the space below. |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.376          |                  |
| Are sample and/or duplicate results below RL?               | See Below ##   |                  |
| Duplicate Numerical Performance Indicator:                  | 1.473          | 30339683001      |
| Duplicate RPD:                                              | 87.44%         | 30339683001 DUF  |
| Duplicate Status vs Numerical Indicator:                    | N/A            |                  |
| Duplicate Status vs RPD:                                    | · Fail         |                  |
| % RPD Limit:                                                | 32%            |                  |

| strix Spike/Matrix Spike Duplicate Sample Assessment              |   |
|-------------------------------------------------------------------|---|
| Sample I.D.                                                       |   |
| Sample MS I.D.                                                    |   |
| Sample MSD I.D.                                                   |   |
| Sample Matrix Spike Result:                                       |   |
| Matrix Spike Result Counting Uncertainty (pCi/L, q, F):           |   |
| Sample Matrix Spike Duplicate Result:                             |   |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |   |
| Duplicate Numerical Performance Indicator:                        | ļ |
| (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:          |   |
| MS/ MSD Duplicate Status vs Numerical Indicator:                  |   |
| MS/ MSD Duplicate Status vs RPD:                                  |   |
| % RPD Limit:                                                      |   |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Batch must be re-prepped due to unacceptable precision.



Ra-226 NELAC QC Printed: 12/26/2019 12:10 PM

Ob 12 20 19

Ra-226\_51478\_DW\_W.xls Ra-226 (R085-8 01Apr2019).xls

# Pace Analytical www.pacelabs.com

# **Quality Control Sample Performance Assessment**

# Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Test      | Ra-228     |
|-----------|------------|
| Analyst:  | VAL        |
| Date:     | 12/19/2019 |
| Worklist: | 51477      |
| Matrix:   | WT         |

| Method Blank Assessmer | nt                                  |         |
|------------------------|-------------------------------------|---------|
|                        | MB Sample ID                        | 1822421 |
|                        | MB concentration:                   | 0.062   |
|                        | M/B 2 Sigma CSU:                    | 0.271   |
|                        | MB MDC:                             | 0.618   |
|                        | MB Numerical Performance Indicator: | 0.45    |
| 1                      | MB Status vs Numerical Indicator:   | Pass    |
|                        | MB Status vs. MDC:                  | Pass    |

| Laboratory Control Sample Assessment          | LCSD (Y or N)? | N         |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS51477       | LCSD51477 |
| Count Date:                                   | 12/26/2019     |           |
| Spike I.D.:                                   | 19-057         |           |
| Decay Corrected Spike Concentration (pCi/mL): | 35.767         |           |
| Volume Used (mL):                             | 0.10           |           |
| Aliquot Volume (L, g, F):                     | 0.826          |           |
| Target Conc. (pCi/L, g, F):                   | 4.332          |           |
| Uncertainty (Calculated):                     | 0.312          |           |
| Result (pCi/L, g, F):                         | 3,345          |           |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 0.929          |           |
| Numerical Performance Indicator:              | -1.97          |           |
| Percent Recovery:                             | 77.22%         |           |
| Status vs Numerical Indicator:                | N/A            |           |
| Status vs Recovery:                           | Pass           |           |
| Upper % Recovery Limits:                      | 135%           |           |
| Lower % Recovery Limits:                      | 60%            |           |

|                                                    | T              |                  |
|----------------------------------------------------|----------------|------------------|
| Duplicate Sample Assessment                        |                | 1                |
| Sample I.D.:                                       |                | Enter Duplicate  |
| Duplicate Sample I.D.                              | 30339969001DUP | sample IDs if    |
| Sample Result (pCi/L, g, F):                       | -0.101         | other than       |
| Sample Result 2 Sigma CSU (pCi/L, g, F):           | 0.332          | LCS/LCSD in      |
| Sample Duplicate Result (pCi/L, g, F):             | 0.358          | the space below. |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 0.366          |                  |
| Are sample and/or duplicate results below RL?      | See Below ##   |                  |
| Duplicate Numerical Performance Indicator:         | -1.818         | 30339969001      |
| Duplicate RPD:                                     | 357.43%        | 30339969001DUP   |
| Duplicate Status vs Numerical Indicator:           | Pass           |                  |
| Duplicate Status vs RPD:                           | Fail***        |                  |
| % RPD Limit:                                       |                |                  |

| Sample Matrix Spike Control Assessment                   | MS/MSD 1      | MS/MSD 2 |
|----------------------------------------------------------|---------------|----------|
| Sample Collection Date:                                  | 12/9/2019     |          |
| Sample I.D.                                              | 30339692001   |          |
| Sample MS I.D.                                           | 30339692001MS |          |
| Sample MSD I.D.                                          |               |          |
| Spike I.D.:                                              | 19-057        |          |
| MS/MSD Decay Corrected Spike Concentration (pCi/mL):     | 35,965        |          |
| Spike Volume Used in MS (mL):                            | 0.20          |          |
| Spike Volume Used in MSD (mL):                           |               |          |
| MS Aliquot (L, g, F):                                    | 0.802         |          |
| MS Target Conc.(pCi/L, g, F):                            |               |          |
| MSD Aliquot (L, g, F):                                   |               |          |
| MSD Target Conc. (pCi/L, g, F):                          |               |          |
| MS Spike Uncertainty (calculated):                       | 0.646         |          |
| MSD Spike Uncertainty (calculated):                      |               |          |
| Sample Result:                                           |               |          |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                 |               |          |
| Sample Matrix Spike Result:                              | 8.048         |          |
| Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.688         |          |
| Sample Matrix Spike Duplicate Result:                    |               |          |
| Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | -0.494        |          |
| MS Numerical Performance Indicator:                      | -0.484        |          |
| MSD Numerical Performance Indicator:                     | 94.83%        |          |
| MS Percent Recovery:<br>MSD Percent Recovery:            | 94.03%        |          |
| MS Status vs Numerical Indicator:                        | Pass          |          |
| MSD Status vs Numerical Indicator:                       | rass          |          |
| MS Status vs Recovery:                                   | Pass          |          |
| MSD Status vs Recovery:                                  | 1 433         |          |
| MS/MSD Upper % Recovery Limits:                          | 135%          |          |
| MS/MSD Lower % Recovery Limits:                          | 60%           |          |
|                                                          |               |          |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit: |  |

<sup>##</sup> Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

Page

ATTACHMENT 1-3
March 2020 Sampling Event
Laboratory Analytical Report



March 31, 2020

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 11, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

Revised Report REV\_1

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin

jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Bob Beck, Evergy Andrew Hare, Evergy, Inc. Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Tabitha Hylton, KCP&L & Westar, Evergy Companies Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Melanie Satanek, Haley & Aldrich, Inc.

Danielle Zinmaster, Haley & Aldrich







#### **CERTIFICATIONS**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

**Pace Analytical Services Kansas** 

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 200030

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET

Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070



# **SAMPLE SUMMARY**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60331435001 | MW-37-031020 | Water  | 03/10/20 15:25 | 03/11/20 14:20 |
| 60331435002 | MW-38-031020 | Water  | 03/10/20 17:00 | 03/11/20 14:20 |
| 60331435003 | MW-K-031120  | Water  | 03/11/20 08:10 | 03/11/20 14:20 |
| 60331435004 | MW-L-031120  | Water  | 03/11/20 09:30 | 03/11/20 14:20 |
| 60331435005 | MW-39-031120 | Water  | 03/11/20 10:45 | 03/11/20 14:20 |
| 60331435006 | DUP-031120   | Water  | 03/11/20 10:55 | 03/11/20 14:20 |
| 60331435007 | MW-40-031120 | Water  | 03/11/20 12:40 | 03/11/20 14:20 |



# **SAMPLE ANALYTE COUNT**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Lab ID      | Sample ID    | Method      | Analysts | Analytes<br>Reported                                                                                                                                                                                                                                                                                                                        | Laboratory |
|-------------|--------------|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 60331435001 | MW-37-031020 | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS, JWR | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, LDB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435002  | MW-38-031020 | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435003  | MW-K-031120  | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435004  | MW-L-031120  | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435005  | MW-39-031120 | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 3 4 2 1 1 3 4 2 1 1 3 4 2 1 1 3 4 2 1 1 3 4 2 1 1 3 4 2 1 1 1 3 4 2 1 1 1 3 4 2 1 1 1 3 4 2 1 1 1 3 4 2 1 1 1 3 4 2 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PASI-K     |
|             |              | SM 2540C    | AJS      |                                                                                                                                                                                                                                                                                                                                             | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435006  | DUP-031120   | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
| 0331435007  | MW-40-031120 | EPA 200.7   | JDE      | 4                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 200.8   | JGP      | 2                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 2540C    | AJS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | SM 4500-H+B | MGS      | 1                                                                                                                                                                                                                                                                                                                                           | PASI-K     |
|             |              | EPA 300.0   | BLA, CNB | 3                                                                                                                                                                                                                                                                                                                                           | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City





# **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

**Date:** March 31, 2020

Amended report revised to reflect re-runs on samples MW-37-031020 and MW-39-031120 in addition to reporting in units of mg/L.



#### **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

# **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 644386

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60331435003,60331435007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2618359)
  - Calcium
- MS (Lab ID: 2618361)
  - Calcium
- MSD (Lab ID: 2618360)
  - Calcium

#### **Additional Comments:**



#### **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

# Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**



#### **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Method: SM 2540C

**Description:** 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: March 31, 2020

#### **General Information:**

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

H5: Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.

• MW-37-031020 (Lab ID: 60331435001)

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:



#### **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Method: SM 4500-H+B

**Description:** 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

**Date:** March 31, 2020

#### **General Information:**

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-031120 (Lab ID: 60331435006)
- MW-37-031020 (Lab ID: 60331435001)
- MW-38-031020 (Lab ID: 60331435002)
- MW-39-031120 (Lab ID: 60331435005)
- MW-40-031120 (Lab ID: 60331435007)
- MW-K-031120 (Lab ID: 60331435003)
- MW-L-031120 (Lab ID: 60331435004)

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### **Additional Comments:**



#### **PROJECT NARRATIVE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Method: EPA 300.0

**Description:** 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

# **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-37-031020          | Lab ID: 603                                                | 31435001      | Collected: 03/10/2  | 20 15:25 | Received: 03   | /11/20 14:20 N | Matrix: Water |     |
|-------------------------------|------------------------------------------------------------|---------------|---------------------|----------|----------------|----------------|---------------|-----|
| Parameters                    | Results                                                    | Units         | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 200.7 Metals, Total           | Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 |               |                     |          |                |                |               |     |
|                               | Pace Analytica                                             | l Services -  | Kansas City         |          |                |                |               |     |
| Barium, Total Recoverable     | 0.065                                                      | mg/L          | 0.0050              | 1        | 03/24/20 10:15 | 03/25/20 15:39 | 7440-39-3     |     |
| Boron, Total Recoverable      | 2.0                                                        | mg/L          | 0.10                | 1        | 03/24/20 10:15 | 03/25/20 15:39 | 7440-42-8     |     |
| Calcium, Total Recoverable    | 172                                                        | mg/L          | 0.20                | 1        | 03/24/20 10:15 | 03/25/20 15:39 | 7440-70-2     |     |
| Lithium                       | 0.018                                                      | mg/L          | 0.010               | 1        | 03/24/20 10:15 | 03/25/20 15:39 | 7439-93-2     |     |
| 200.8 MET ICPMS               | Analytical Met                                             | hod: EPA 20   | 0.8 Preparation Met | hod: EF  | PA 200.8       |                |               |     |
|                               | Pace Analytica                                             | al Services - | Kansas City         |          |                |                |               |     |
| Arsenic, Total Recoverable    | 0.0065                                                     | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:07 | 7440-38-2     |     |
| Molybdenum, Total Recoverable | 0.12                                                       | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:07 | 7439-98-7     |     |
| 2540C Total Dissolved Solids  | Analytical Metl                                            | hod: SM 254   | 40C                 |          |                |                |               |     |
|                               | Pace Analytica                                             | al Services - | Kansas City         |          |                |                |               |     |
| Total Dissolved Solids        | 873                                                        | mg/L          | 10.0                | 1        |                | 03/12/20 14:44 |               |     |
| Total Dissolved Solids        | 853                                                        | mg/L          | 10.0                | 1        |                | 03/23/20 15:55 |               | H5  |
| 4500H+ pH, Electrometric      | Analytical Met                                             | hod: SM 450   | 00-H+B              |          |                |                |               |     |
| • '                           | Pace Analytica                                             | al Services - | Kansas City         |          |                |                |               |     |
| pH at 25 Degrees C            | 7.0                                                        | Std. Units    | 0.10                | 1        |                | 03/24/20 13:31 |               | H6  |
| 300.0 IC Anions 28 Days       | Analytical Metl                                            | hod: EPA 30   | 0.0                 |          |                |                |               |     |
| •                             | Pace Analytica                                             | al Services - | Kansas City         |          |                |                |               |     |
| Chloride                      | 37.9                                                       | mg/L          | 10.0                | 10       |                | 03/12/20 17:10 | 16887-00-6    |     |
| Chloride                      | 40.6                                                       | mg/L          | 20.0                | 20       |                | 03/23/20 22:04 | 16887-00-6    |     |
| Fluoride                      | 0.27                                                       | mg/L          | 0.20                | 1        |                | 03/12/20 16:41 | 16984-48-8    |     |
| Fluoride                      | 0.27                                                       | mg/L          | 0.20                | 1        |                | 03/23/20 21:49 | 16984-48-8    |     |
| Sulfate                       | 313                                                        | mg/L          | 50.0                | 50       |                | 03/12/20 17:39 | 14808-79-8    |     |
| Sulfate                       | 319                                                        | mg/L          | 20.0                | 20       |                | 03/23/20 22:04 | 14808-79-8    |     |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-38-031020          | Lab ID: 603    | 31435002      | Collected: 03/10/2  | 20 17:00 | Received: 03   | /11/20 14:20 N | latrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF  | PA 200.7       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1        | 03/17/20 15:59 | 03/18/20 14:45 | 7440-39-3     |      |
| Boron, Total Recoverable      | 5.4            | mg/L          | 0.10                | 1        | 03/17/20 15:59 | 03/18/20 14:45 | 7440-42-8     |      |
| Calcium, Total Recoverable    | 336            | mg/L          | 0.20                | 1        | 03/17/20 15:59 | 03/18/20 14:45 | 7440-70-2     |      |
| Lithium                       | 0.074          | mg/L          | 0.010               | 1        | 03/17/20 15:59 | 03/18/20 14:45 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF  | PA 200.8       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Arsenic, Total Recoverable    | 0.015          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:15 | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.082          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:15 | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 10C                 |          |                |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Total Dissolved Solids        | 2460           | mg/L          | 40.0                | 1        |                | 03/12/20 14:44 |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |          |                |                |               |      |
| •                             | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| pH at 25 Degrees C            | 7.6            | Std. Units    | 0.10                | 1        |                | 03/18/20 14:23 |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Chloride                      | 249            | mg/L          | 50.0                | 50       |                | 03/12/20 19:06 | 16887-00-6    |      |
| Fluoride                      | 4.9            | mg/L          | 0.20                | 1        |                | 03/12/20 18:08 | 16984-48-8    |      |
| Sulfate                       | 1290           | mg/L          | 100                 | 100      |                | 03/13/20 13:57 | 14808-79-8    |      |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-K-031120           | Lab ID: 603                 | 31435003      | Collected: 03/11/2   | 0 08:10 | Received: 03   | /11/20 14:20 N | Matrix: Water |     |  |
|-------------------------------|-----------------------------|---------------|----------------------|---------|----------------|----------------|---------------|-----|--|
| Parameters                    | Results                     | Units         | Report Limit         | DF      | Prepared       | Analyzed       | CAS No.       | Qua |  |
| 200.7 Metals, Total           | Analytical Met              | hod: EPA 20   | 00.7 Preparation Met | hod: EF | PA 200.7       |                |               |     |  |
|                               | Pace Analytic               | al Services - | Kansas City          |         |                |                |               |     |  |
| Barium, Total Recoverable     | 0.043                       | mg/L          | 0.0050               | 1       | 03/17/20 15:59 | 03/18/20 14:48 | 7440-39-3     |     |  |
| Boron, Total Recoverable      | 1.8                         | mg/L          | 0.10                 | 1       | 03/17/20 15:59 | 03/18/20 14:48 | 7440-42-8     |     |  |
| Calcium, Total Recoverable    | 562                         | mg/L          | 0.20                 | 1       | 03/17/20 15:59 | 03/18/20 14:48 | 7440-70-2     | M1  |  |
| Lithium                       | 0.077                       | mg/L          | 0.010                | 1       | 03/17/20 15:59 | 03/18/20 14:48 | 7439-93-2     |     |  |
| 200.8 MET ICPMS               | Analytical Met              | hod: EPA 20   | 0.8 Preparation Met  | hod: EF | PA 200.8       |                |               |     |  |
|                               | Pace Analytic               | al Services - | Kansas City          |         |                |                |               |     |  |
| Arsenic, Total Recoverable    | 0.067                       | mg/L          | 0.0010               | 1       | 03/18/20 09:38 | 03/19/20 15:21 | 7440-38-2     |     |  |
| Molybdenum, Total Recoverable | 0.016                       | mg/L          | 0.0010               | 1       | 03/18/20 09:38 | 03/19/20 15:21 | 7439-98-7     |     |  |
| 2540C Total Dissolved Solids  | Analytical Method: SM 2540C |               |                      |         |                |                |               |     |  |
|                               | Pace Analytic               | al Services - | Kansas City          |         |                |                |               |     |  |
| Total Dissolved Solids        | 5020                        | mg/L          | 125                  | 1       |                | 03/13/20 11:11 |               |     |  |
| 4500H+ pH, Electrometric      | Analytical Met              | hod: SM 450   | 00-H+B               |         |                |                |               |     |  |
|                               | Pace Analytic               | al Services - | Kansas City          |         |                |                |               |     |  |
| pH at 25 Degrees C            | 7.3                         | Std. Units    | 0.10                 | 1       |                | 03/18/20 14:29 |               | H6  |  |
| 300.0 IC Anions 28 Days       | Analytical Met              | hod: EPA 30   | 0.00                 |         |                |                |               |     |  |
| ·                             | Pace Analytic               | al Services - | Kansas City          |         |                |                |               |     |  |
| Chloride                      | 944                         | mg/L          | 50.0                 | 50      |                | 03/12/20 19:50 | 16887-00-6    |     |  |
| Fluoride                      | 2.7                         | mg/L          | 0.20                 | 1       |                | 03/12/20 19:21 | 16984-48-8    |     |  |
| Sulfate                       | 2190                        | mg/L          | 200                  | 200     |                | 03/13/20 14:13 | 14808-79-8    |     |  |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-L-031120           | Lab ID: 603                                                | 31435004      | Collected: 03/11/2 | 20 09:30 | Received: 03   | /11/20 14:20 N | latrix: Water |      |  |
|-------------------------------|------------------------------------------------------------|---------------|--------------------|----------|----------------|----------------|---------------|------|--|
| Parameters                    | Results                                                    | Units         | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |  |
| 200.7 Metals, Total           | Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 |               |                    |          |                |                |               |      |  |
|                               | Pace Analytic                                              | al Services - | Kansas City        |          |                |                |               |      |  |
| Barium, Total Recoverable     | 0.035                                                      | mg/L          | 0.0050             | 1        | 03/17/20 15:59 | 03/18/20 14:59 | 7440-39-3     |      |  |
| Boron, Total Recoverable      | 2.6                                                        | mg/L          | 0.10               | 1        | 03/17/20 15:59 | 03/18/20 14:59 | 7440-42-8     |      |  |
| Calcium, Total Recoverable    | 551                                                        | mg/L          | 0.20               | 1        | 03/17/20 15:59 | 03/18/20 14:59 | 7440-70-2     |      |  |
| Lithium                       | 0.057                                                      | mg/L          | 0.010              | 1        | 03/17/20 15:59 | 03/18/20 14:59 | 7439-93-2     |      |  |
| 200.8 MET ICPMS               | Analytical Met                                             | hod: EPA 20   | 0.8 Preparation Me | thod: EF | PA 200.8       |                |               |      |  |
|                               | Pace Analytic                                              | al Services - | Kansas City        |          |                |                |               |      |  |
| Arsenic, Total Recoverable    | 0.024                                                      | mg/L          | 0.0010             | 1        | 03/18/20 09:38 | 03/19/20 15:24 | 7440-38-2     |      |  |
| Molybdenum, Total Recoverable | 0.049                                                      | mg/L          | 0.0010             | 1        | 03/18/20 09:38 | 03/19/20 15:24 | 7439-98-7     |      |  |
| 2540C Total Dissolved Solids  | Analytical Met                                             | hod: SM 254   | 10C                |          |                |                |               |      |  |
|                               | Pace Analytic                                              | al Services - | Kansas City        |          |                |                |               |      |  |
| Total Dissolved Solids        | 3880                                                       | mg/L          | 100                | 1        |                | 03/13/20 11:11 |               |      |  |
| 4500H+ pH, Electrometric      | Analytical Met                                             | hod: SM 450   | 00-H+B             |          |                |                |               |      |  |
| •                             | Pace Analytic                                              | al Services - | Kansas City        |          |                |                |               |      |  |
| pH at 25 Degrees C            | 7.3                                                        | Std. Units    | 0.10               | 1        |                | 03/18/20 14:30 |               | H6   |  |
| 300.0 IC Anions 28 Days       | Analytical Met                                             | hod: EPA 30   | 0.0                |          |                |                |               |      |  |
| ·                             | Pace Analytic                                              | al Services - | Kansas City        |          |                |                |               |      |  |
| Chloride                      | 633                                                        | mg/L          | 50.0               | 50       |                | 03/12/20 20:34 | 16887-00-6    |      |  |
| Fluoride                      | 2.4                                                        | mg/L          | 0.20               | 1        |                | 03/12/20 20:05 | 16984-48-8    |      |  |
| Sulfate                       | 1880                                                       | mg/L          | 200                | 200      |                | 03/13/20 14:29 | 14808-79-8    |      |  |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-39-031120          | Lab ID: 603    | 31435005      | Collected: 03/11/2  | 20 10:45 | Received: 03   | /11/20 14:20 N | latrix: Water |     |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|----------------|---------------|-----|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | thod: EF | PA 200.7       |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City         |          |                |                |               |     |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1        | 03/24/20 10:15 | 03/25/20 15:46 | 7440-39-3     |     |
| Boron, Total Recoverable      | 5.0            | mg/L          | 0.10                | 1        | 03/24/20 10:15 | 03/25/20 15:46 | 7440-42-8     |     |
| Calcium, Total Recoverable    | 576            | mg/L          | 0.20                | 1        | 03/24/20 10:15 | 03/25/20 15:46 | 7440-70-2     |     |
| Lithium                       | 0.037          | mg/L          | 0.010               | 1        | 03/24/20 10:15 | 03/25/20 15:46 | 7439-93-2     |     |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | thod: EF | PA 200.8       |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City         |          |                |                |               |     |
| Arsenic, Total Recoverable    | 0.011          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:26 | 7440-38-2     |     |
| Molybdenum, Total Recoverable | 0.18           | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:26 | 7439-98-7     |     |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |          |                |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City         |          |                |                |               |     |
| Total Dissolved Solids        | 3370           | mg/L          | 66.7                | 1        |                | 03/13/20 11:11 |               |     |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |          |                |                |               |     |
| •                             | Pace Analytic  | al Services - | Kansas City         |          |                |                |               |     |
| pH at 25 Degrees C            | 7.2            | Std. Units    | 0.10                | 1        |                | 03/19/20 09:24 |               | H6  |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                |               |     |
| ·                             | Pace Analytic  | al Services - | Kansas City         |          |                |                |               |     |
| Chloride                      | 317            | mg/L          | 50.0                | 50       |                | 03/12/20 21:18 | 16887-00-6    |     |
| Fluoride                      | 2.2            | mg/L          | 0.20                | 1        |                | 03/12/20 20:49 | 16984-48-8    |     |
| Sulfate                       | 1730           | mg/L          | 200                 | 200      |                | 03/13/20 14:45 | 14808-79-8    |     |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: DUP-031120            | Lab ID: 603    | 31435006      | Collected: 03/11/2  | 20 10:55 | Received: 03   | /11/20 14:20 M | latrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | thod: EF | PA 200.7       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1        | 03/17/20 15:59 | 03/18/20 15:04 | 7440-39-3     |      |
| Boron, Total Recoverable      | 4.8            | mg/L          | 0.10                | 1        | 03/17/20 15:59 | 03/18/20 15:04 | 7440-42-8     |      |
| Calcium, Total Recoverable    | 577            | mg/L          | 0.20                | 1        | 03/17/20 15:59 | 03/18/20 15:04 | 7440-70-2     |      |
| Lithium                       | 0.037          | mg/L          | 0.010               | 1        | 03/17/20 15:59 | 03/18/20 15:04 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | thod: EF | PA 200.8       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Arsenic, Total Recoverable    | 0.011          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:29 | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.18           | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:29 | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 10C                 |          |                |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Total Dissolved Solids        | 3450           | mg/L          | 66.7                | 1        |                | 03/13/20 11:11 |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |          |                |                |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| pH at 25 Degrees C            | 7.3            | Std. Units    | 0.10                | 1        |                | 03/19/20 09:32 |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                |               |      |
| ·                             | Pace Analytica | al Services - | Kansas City         |          |                |                |               |      |
| Chloride                      | 351            | mg/L          | 50.0                | 50       |                | 03/12/20 22:31 | 16887-00-6    |      |
| Fluoride                      | 2.2            | mg/L          | 0.20                | 1        |                | 03/12/20 22:02 | 16984-48-8    |      |
| Sulfate                       | 1720           | mg/L          | 200                 | 200      |                | 03/13/20 15:32 | 14808-79-8    |      |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| Sample: MW-40-031120          | Lab ID: 603    | 331435007     | Collected: 03/11/2   | 0 12:40 | Received: 03   | /11/20 14:20 I | Matrix: Water |     |
|-------------------------------|----------------|---------------|----------------------|---------|----------------|----------------|---------------|-----|
| Parameters                    | Results        | Units         | Report Limit         | DF      | Prepared       | Analyzed       | CAS No.       | Qua |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 00.7 Preparation Met | hod: EF | PA 200.7       |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City          |         |                |                |               |     |
| Barium, Total Recoverable     | 0.032          | mg/L          | 0.0050               | 1       | 03/17/20 15:59 | 03/18/20 15:07 | 7440-39-3     |     |
| Boron, Total Recoverable      | 4.9            | mg/L          | 0.10                 | 1       | 03/17/20 15:59 | 03/18/20 15:07 | 7440-42-8     |     |
| Calcium, Total Recoverable    | 464            | mg/L          | 0.20                 | 1       | 03/17/20 15:59 | 03/18/20 15:07 | 7440-70-2     | M1  |
| Lithium                       | 0.041          | mg/L          | 0.010                | 1       | 03/17/20 15:59 | 03/18/20 15:07 | 7439-93-2     |     |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met  | hod: EF | PA 200.8       |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City          |         |                |                |               |     |
| Arsenic, Total Recoverable    | 0.014          | mg/L          | 0.0010               | 1       | 03/18/20 09:38 | 03/19/20 15:31 | 7440-38-2     |     |
| Molybdenum, Total Recoverable | 0.096          | mg/L          | 0.0010               | 1       | 03/18/20 09:38 | 03/19/20 15:31 | 7439-98-7     |     |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 25    | 40C                  |         |                |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City          |         |                |                |               |     |
| Total Dissolved Solids        | 3090           | mg/L          | 66.7                 | 1       |                | 03/13/20 11:11 |               |     |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B               |         |                |                |               |     |
|                               | Pace Analytic  | al Services - | Kansas City          |         |                |                |               |     |
| pH at 25 Degrees C            | 7.2            | Std. Units    | 0.10                 | 1       |                | 03/19/20 09:34 |               | H6  |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.00                 |         |                |                |               |     |
| •                             | Pace Analytic  | al Services - | Kansas City          |         |                |                |               |     |
| Chloride                      | 289            | mg/L          | 50.0                 | 50      |                | 03/12/20 23:15 | 16887-00-6    |     |
| Fluoride                      | 1.6            | mg/L          | 0.20                 | 1       |                | 03/12/20 22:46 | 16984-48-8    |     |
| Sulfate                       | 1490           | mg/L          | 200                  | 200     |                | 03/13/20 15:48 | 14808-79-8    |     |



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

QC Batch: 644386 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435002, 60331435003, 60331435004, 60331435006, 60331435007

METHOD BLANK: 2618357 Matrix: Water

Associated Lab Samples: 60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Barium    | mg/L  | <0.0050         | 0.0050             | 03/18/20 14:41 |            |
| Boron     | mg/L  | <0.10           | 0.10               | 03/18/20 14:41 |            |
| Calcium   | mg/L  | <0.20           | 0.20               | 03/18/20 14:41 |            |
| Lithium   | mg/L  | < 0.010         | 0.010              | 03/18/20 14:41 |            |

| LABORATORY CONTROL SAMPLE: | 2618358 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Barium                     | mg/L    |       | 0.98   | 98    | 85-115 |            |
| Boron                      | mg/L    | 1     | 0.96   | 96    | 85-115 |            |
| Calcium                    | mg/L    | 10    | 10.2   | 102   | 85-115 |            |
| Lithium                    | mg/L    | 1     | 0.98   | 98    | 85-115 |            |

| MATRIX SPIKE & MATRIX SP | PIKE DUPL | ICATE: 2618 | 359         |              | 2618360 |        |       |        |        |     |     |      |
|--------------------------|-----------|-------------|-------------|--------------|---------|--------|-------|--------|--------|-----|-----|------|
|                          |           | 60331435003 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD    | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec  | % Rec  | RPD | RPD | Qual |
|                          |           |             |             | COIIC.       |         | Nesuit |       | /0 KeC |        |     | KFD | Quai |
| Barium                   | mg/L      | 0.043       | 1           | 1            | 1.0     | 1.0    | 100   | 99     | 70-130 | 1   | 20  |      |
| Boron                    | mg/L      | 1.8         | 1           | 1            | 2.7     | 2.7    | 98    | 94     | 70-130 | 2   | 20  |      |
| Calcium                  | mg/L      | 562         | 10          | 10           | 576     | 558    | 138   | -43    | 70-130 | 3   | 20  | M1   |
| Lithium                  | mg/L      | 0.077       | 1           | 1            | 1.1     | 1.1    | 102   | 101    | 70-130 | 1   | 20  |      |

| MATRIX SPIKE SAMPLE: | 2618361 |             |       |        |       |          |             |
|----------------------|---------|-------------|-------|--------|-------|----------|-------------|
|                      |         | 60331435007 | Spike | MS     | MS    | % Rec    |             |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits   | Qualifiers  |
| Barium               | mg/L    | 0.032       | 1     | 0.99   | 95    | 70-130   |             |
| Boron                | mg/L    | 4.9         | 1     | 5.7    | 80    | 70-130   |             |
| Calcium              | mg/L    | 464         | 10    | 462    | -20   | 70-130 N | <i>I</i> 11 |
| Lithium              | mg/L    | 0.041       | 1     | 1.0    | 96    | 70-130   |             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 645571

Analysis Method: EP

EPA 200.7

QC Batch Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435001, 60331435005

METHOD BLANK: 2622240

Date: 03/31/2020 02:19 PM

Matrix: Water

Laboratory:

Associated Lab Samples: 6033143

60331435001, 60331435005

|           |       | Blank   | Reporting |                |            |
|-----------|-------|---------|-----------|----------------|------------|
| Parameter | Units | Result  | Limit     | Analyzed       | Qualifiers |
| Barium    | mg/L  | <0.0050 | 0.0050    | 03/25/20 15:36 |            |
| Boron     | mg/L  | <0.10   | 0.10      | 03/25/20 15:36 |            |
| Calcium   | mg/L  | <0.20   | 0.20      | 03/25/20 15:36 |            |
| Lithium   | ma/L  | < 0.010 | 0.010     | 03/25/20 15:36 |            |

| LABORATORY CONTROL SAMPLE: | 2622241 |                |               |              |                 |            |
|----------------------------|---------|----------------|---------------|--------------|-----------------|------------|
| Parameter                  | Units   | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Barium                     | mg/L    |                | 1.0           | 102          | 85-115          |            |
| Boron                      | mg/L    | 1              | 0.98          | 98           | 85-115          |            |
| Calcium                    | mg/L    | 10             | 10.5          | 105          | 85-115          |            |
| Lithium                    | mg/L    | 1              | 1.0           | 102          | 85-115          |            |

| MATRIX SPIKE & MATRIX SPI | KE DUPI | LICATE: 2622  | 242   |       | 2622243 |        |       |       |        |     |     |      |
|---------------------------|---------|---------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |         |               | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           |         | 60331875001   | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units   | Result        | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Barium                    | mg/L    | 16.7 ug/L     | 1     | 1     | 1.0     | 1.1    | 103   | 104   | 70-130 | 0   | 20  |      |
| Boron                     | mg/L    | ND            | 1     | 1     | 1.0     | 1.1    | 99    | 101   | 70-130 | 2   | 20  |      |
| Calcium                   | mg/L    | 42700<br>ug/L | 10    | 10    | 52.8    | 53.1   | 101   | 104   | 70-130 | 1   | 20  |      |
| Lithium                   | mg/L    | 44.8 ug/L     | 1     | 1     | 1.1     | 1.1    | 103   | 104   | 70-130 | 1   | 20  |      |

| MATRIX SPIKE SAMPLE: | 2622244 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60331955002 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Barium               | mg/L    | ND ND       | 1     | 1.0    | 103   | 70-130 |            |
| Boron                | mg/L    | ND          | 1     | 0.97   | 97    | 70-130 |            |
| Calcium              | mg/L    | ND          | 10    | 10.4   | 104   | 70-130 |            |
| Lithium              | mg/L    | ND          | 1     | 1.0    | 105   | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

LEC INACTIVE ASH PONDS CCR Project:

Pace Project No.: 60331435

Arsenic

Date: 03/31/2020 02:19 PM

QC Batch: 644518 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

> Laboratory: Pace Analytical Services - Kansas City

60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers <0.0010 0.0010 03/19/20 15:05 mg/L Molybdenum <0.0010 0.0010 03/19/20 15:05 mg/L

LABORATORY CONTROL SAMPLE: 2618777

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 0.04 0.039 98 85-115 mg/L Molybdenum mg/L 0.04 0.040 100 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2618778 2618779 MS MSD 60331435001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Arsenic mg/L 0.0065 0.04 0.04 0.048 0.047 103 101 70-130 2 20 Molybdenum 0.12 0.04 0.04 0.17 122 70-130 20 mg/L 0.16 117 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 643527 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435001, 60331435002

METHOD BLANK: 2614869 Matrix: Water

Associated Lab Samples: 60331435001, 60331435002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/12/20 14:44

LABORATORY CONTROL SAMPLE: 2614870

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2614871

60331300001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2410 **Total Dissolved Solids** mg/L 3 2490 10

SAMPLE DUPLICATE: 2614872

Date: 03/31/2020 02:19 PM

60331438006 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 24900 2 mg/L 25300 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 643742 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

METHOD BLANK: 2615836 Matrix: Water

Associated Lab Samples: 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/13/20 11:10

LABORATORY CONTROL SAMPLE: 2615837

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Dissolved Solids** 1000 1000 100 80-120

SAMPLE DUPLICATE: 2615838

60331477008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 797 **Total Dissolved Solids** 0 mg/L 799 10

SAMPLE DUPLICATE: 2615839

Date: 03/31/2020 02:19 PM

60331478001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 508 mg/L 508 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 645498 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435001

METHOD BLANK: 2622089 Matrix: Water

Associated Lab Samples: 60331435001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/23/20 15:55

LABORATORY CONTROL SAMPLE: 2622090

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2622091

SAMPLE DUPLICATE: 2622092

Date: 03/31/2020 02:19 PM

60331435001 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L853899510 H1

60332166010 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 Total Dissolved Solids 214 mg/L 215 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 644593 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435002, 60331435003, 60331435004

SAMPLE DUPLICATE: 2619185

Date: 03/31/2020 02:19 PM

|                    |            | 60331267002 | Dup    |     | Max |            |
|--------------------|------------|-------------|--------|-----|-----|------------|
| Parameter          | Units      | Result      | Result | RPD | RPD | Qualifiers |
| pH at 25 Degrees C | Std. Units | 6.9         | 7.2    | 4   |     | 5 H6       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 644682 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435005, 60331435006, 60331435007

SAMPLE DUPLICATE: 2619321

Date: 03/31/2020 02:19 PM

|                    |            | 60331435005 | Dup    |     | Max |            |
|--------------------|------------|-------------|--------|-----|-----|------------|
| Parameter          | Units      | Result      | Result | RPD | RPD | Qualifiers |
| pH at 25 Degrees C | Std. Units | 7.2         | 7.2    | 1   |     | 5 H6       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 645273 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435001

SAMPLE DUPLICATE: 2621668

Date: 03/31/2020 02:19 PM

60331435001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.0 pH at 25 Degrees C 7.2 3 5 H6 Std. Units

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

QC Batch: 643357 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Kansas City

60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407007, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 60331407, 6035107, 6035107, 6035107, 6035107, 6035107, 6035107, 6035107, 6035107, 6035107, 6035107, 605007, 605007, 605007, 605007, 605007, 605007, 605007, 605007, 60Associated Lab Samples:

METHOD BLANK: 2614192 Matrix: Water

Associated Lab Samples: 60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | <1.0   | 1.0       | 03/12/20 07:28 |            |
| Fluoride  | mg/L  | <0.20  | 0.20      | 03/12/20 07:28 |            |
| Sulfate   | mg/L  | <1.0   | 1.0       | 03/12/20 07:28 |            |

METHOD BLANK: 2615595 Matrix: Water

Associated Lab Samples: 60331435001, 60331435002, 60331435003, 60331435004, 60331435005, 60331435006, 60331435007

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Chloride  | mg/L  | <1.0            | 1.0                | 03/13/20 12:54 |            |
| Fluoride  | mg/L  | <0.20           | 0.20               | 03/13/20 12:54 |            |
| Sulfate   | mg/L  | <1.0            | 1.0                | 03/13/20 12:54 |            |

| LABORATORY CONTROL SAMPLE: | 2614193 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    |       | 4.7    | 93    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.4    | 95    | 90-110 |            |
| Sulfate                    | mg/L    | 5     | 5.1    | 101   | 90-110 |            |

| LABORATORY CONTROL SAMPLE: | 2615596 |       |        |       |        |            |  |
|----------------------------|---------|-------|--------|-------|--------|------------|--|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |  |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |  |
| Chloride                   | mg/L    | 5     | 4.6    | 93    | 90-110 |            |  |
| Fluoride                   | mg/L    | 2.5   | 2.6    | 105   | 90-110 |            |  |
| Sulfate                    | mg/L    | 5     | 5.1    | 102   | 90-110 |            |  |

mg/L

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 2614 | 194         |              | 2614195 |        |       |       |        |     |       |      |
|--------------------------|----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-------|------|
|                          |          | 20145436001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max   |      |
|                          |          | 20145436001 | Spike       | Spike        | IVIO    | INIOD  | IVIO  | MOD   | % Rec  |     | IVIAX |      |
| Parameter                | Units    | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD   | Qual |
| Chloride                 | mg/L     | 8.5         | 5           | 5            | 14.1    | 14.1   | 111   | 112   | 80-120 | 1   | 15    |      |
| Fluoride                 | mg/L     | ND          | 2.5         | 2.5          | 2.9     | 3.0    | 110   | 112   | 80-120 | 2   | 15    |      |
| Sulfate                  | mg/L     | 3.1         | 5           | 5            | 8.8     | 9.0    | 114   | 116   | 80-120 | 1   | 15    |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| MATRIX SPIKE SAMPLE: | 2614196 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60331435001 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride             | mg/L    | 40.6        | 50    | 88.5   | 101   | 80-120 |            |
| Fluoride             | mg/L    | 0.27        | 2.5   | 3.1    | 112   | 80-120 |            |
| Sulfate              | mg/L    | 319         | 250   | 587    | 110   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

QC Batch: 645341 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60331435001

METHOD BLANK: 2621834 Matrix: Water

Associated Lab Samples: 60331435001

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L <1.0 1.0 03/23/20 12:05 Fluoride mg/L < 0.20 0.20 03/23/20 12:05 Sulfate mg/L 03/23/20 12:05 <1.0 1.0

METHOD BLANK: 2622225 Matrix: Water

Associated Lab Samples: 60331435001

Date: 03/31/2020 02:19 PM

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Chloride  | mg/L  | <1.0            | 1.0                | 03/24/20 08:07 |            |
| Fluoride  | mg/L  | <0.20           | 0.20               | 03/24/20 08:07 |            |
| Sulfate   | mg/L  | <1.0            | 1.0                | 03/24/20 08:07 |            |

| LABORATORY CONTROL SAMPLE: | 2621835 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 5     | 4.8    | 96    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.5    | 100   | 90-110 |            |
| Sulfate                    | mg/L    | 5     | 5.1    | 102   | 90-110 |            |

| LABORATORY CONTROL SAMPLE: | 2622226 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 5     | 4.8    | 96    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.4    | 97    | 90-110 |            |
| Sulfate                    | mg/L    | 5     | 5.1    | 101   | 90-110 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 2621 | 836         |              | 2621837 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          | 60332331001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chlorido                 |          |             | 1000        | 1000         | 1110    | 1150   |       | 07    | 00.420 |     |     |      |
| Chloride                 | mg/L     | 177         | 1000        | 1000         | 1110    | 1150   | 94    | 97    | 80-120 | 3   | 15  |      |
| Fluoride                 | mg/L     | ND          | 500         | 500          | 487     | 486    | 97    | 97    | 80-120 | 0   | 15  |      |
| Sulfate                  | mg/L     | 1880        | 1000        | 1000         | 2890    | 2910   | 101   | 103   | 80-120 | 1   | 15  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| MATRIX SPIKE SAMPLE: | 2621838 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60332423003 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride             | mg/L    | 2.7         |       | 7.9    | 104   | 80-120 |            |
| Fluoride             | mg/L    | < 0.075     | 2.5   | 2.8    | 114   | 80-120 |            |
| Sulfate              | mg/L    | 33.7        | 25    | 58.6   | 100   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 03/31/2020 02:19 PM

H1 Analysis conducted outside the EPA method holding time.

H5 Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: 03/31/2020 02:19 PM

| B0331435001   MW-37-031020   EPA 200.7   645571   EPA 200.7   645733   B0331435002   MW-38-031020   EPA 200.7   644386   EPA 200.7   644506   B0331435003   MW-46-031120   EPA 200.7   644386   EPA 200.7   644506   B0331435004   MW-1-031120   EPA 200.7   644386   EPA 200.7   644506   B0331435005   MW-39-031120   EPA 200.7   645571   EPA 200.7   644506   B0331435005   MW-39-031120   EPA 200.7   645571   EPA 200.7   644506   B0331435007   MW-40-031120   EPA 200.7   644386   EPA 200.7   644506   B0331435001   MW-37-031020   EPA 200.7   644386   EPA 200.7   644506   B0331435001   MW-37-031020   EPA 200.8   644518   EPA 200.8   644596   B0331435002   MW-38-031020   EPA 200.8   644518   EPA 200.8   644596   B0331435004   MW-1-031120   EPA 200.8   644518   EPA 200.8   644596   B0331435005   MW-39-031120   EPA 200.8   644518   EPA 200.8   644596   B0331435006   MW-39-031120   EPA 200.8   644518   EPA 200.8   644596   B0331435007   MW-40-031120   EPA 200.8   644518   EPA 200.8   644596   B0331435001   MW-37-031020   EPA 200.8   644518   EPA 200.8   644596   B0331435001   MW-37-031020   EPA 200.8   644518   EPA 200.8   644596   B0331435001   MW-37-031020   SM 2540C   643527   B0331435001   MW-37-031020   SM 2540C   643527   B0331435001   MW-37-031020   SM 2540C   643742   B0331435001   MW-37-031020   SM 4500-H+B   64682   B0331435001   MW-3031120   SM 2540C   643742   B0331435001   MW-3031120   SM 2540C   643742   B0331435001   MW-3031120   SM 4500-H+B   64682   B0331435001   MW-3031120   SM 4500-H+B   64682   B0331435001   MW-3031120   SM 4500-H+B   64682   B0331435001   MW-3031120   EPA   | Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60331435003   MW-K-031120   EPA 200.7   644366   EPA 200.7   644566   60331435004   MW-L-031120   EPA 200.7   645761   EPA 200.7   645761   645761   645761   645761   645761   645761   644566   60331435005   MW-39-031120   EPA 200.7   644366   EPA 200.7   644566   60331435007   MW-40-031120   EPA 200.7   644366   EPA 200.7   644566   60331435007   MW-40-031120   EPA 200.8   644366   EPA 200.7   644566   60331435001   MW-37-031020   EPA 200.8   644518   EPA 200.8   644596   60331435003   MW-K-031120   EPA 200.8   644518   EPA 200.8   644596   60331435003   MW-K-031120   EPA 200.8   644518   EPA 200.8   644596   60331435003   MW-K-031120   EPA 200.8   644518   EPA 200.8   644596   60331435003   MW-39-031120   EPA 200.8   644518   EPA 200.8   644596   60331435003   MW-40-031120   EPA 200.8   644518   EPA 200.8   644596   60331435001   MW-031120   EPA 200.8   644518   EPA 200.8   644596   60331435001   MW-40-031120   EPA 200.8   644518   EPA 200.8   644596   60331435001   MW-40-031120   EPA 200.8   644518   EPA 200.8   644596   60331435001   MW-40-031120   SM 2540C   643527   EPA 200.8   644596   60331435001   MW-37-031020   SM 2540C   643527   EPA 200.8   644596   60331435001   MW-39-031120   SM 2540C   643742   60331435001   MW-40-031120   SM 4500-H+B   644593   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   644596   6   | 60331435001 | MW-37-031020 | EPA 200.7       | 645571   | EPA 200.7         | 645733              |
| 60331435004         MW-L-031120         EPA 200.7         644386         EPA 200.7         64573           60331435005         MW-39-031120         EPA 200.7         64571         EPA 200.7         644506           60331435007         MW-40-031120         EPA 200.7         644386         EPA 200.7         644506           60331435007         MW-37-031020         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         EPA 200.8         644518         EPA 200.8         644596           60331435002         MW-38-031020         EPA 200.8         644518         EPA 200.8         644596           60331435003         MW-4-0-031120         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-L-031120         EPA 200.8         644518         EPA 200.8         644596           60331435005         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-30-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         644596         6033143500         644596           60331435001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60331435002 | MW-38-031020 | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435005         MW-39-031120         EPA 200.7         645571         EPA 200.7         64536           60331435006         DUP-031120         EPA 200.7         644386         EPA 200.7         644506           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644506           60331435001         MW-39-031020         EPA 200.8         644518         EPA 200.8         644596           60331435002         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-10-031120         EPA 200.8         644518         EPA 200.8         644596           60331435005         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-30-03120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-37-031020         SM 2540C         643527         643518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         645287         645742         6033143500         644596         6033143500         644596         6033143500         644596         6033143500         644596         6033143500         644596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60331435003 | MW-K-031120  | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435006 DUP-031120 EPA 200.7 644386 EPA 200.7 644506 60331435007 MW-40-031120 EPA 200.7 644386 EPA 200.7 644506 60331435007 MW-37-031020 EPA 200.8 644518 EPA 200.8 644596 60331435002 MW-38-031020 EPA 200.8 644518 EPA 200.8 644596 60331435003 MW-K-031120 EPA 200.8 644518 EPA 200.8 644596 60331435004 MW-1-031120 EPA 200.8 644518 EPA 200.8 644596 60331435005 MW-39-031120 EPA 200.8 644518 EPA 200.8 644596 60331435006 MW-1-031120 EPA 200.8 644518 EPA 200.8 644596 60331435006 MW-1-031120 EPA 200.8 644518 EPA 200.8 644596 60331435006 MW-3-031120 EPA 200.8 644518 EPA 200.8 644596 60331435007 MW-40-031120 EPA 200.8 644518 EPA 200.8 644596 60331435001 MW-37-031020 EPA 200.8 644518 EPA 200.8 644596 60331435001 MW-37-031020 SM 2540C 643527 60331435001 MW-37-031020 SM 2540C 643527 60331435001 MW-40-031120 SM 2540C 643742 60331435004 MW-1-031120 SM 2540C 643742 60331435006 DUP-031120 SM 2540C 643742 60331435001 MW-37-031020 SM 2540C 643742 60331435001 MW-40-031120 SM 2540C 643742 60331435001 MW-37-031020 SM 4500-H+B 644593 60331435001 MW-37-031020 EPA 300.0 643357 60331435001 MW-4-031120 EPA 300.0 643357 60331435001 MW-4-031120 EPA 300.0 643357 60331435001 MW-4-031120 EPA 300.0 643357 60331435001 MW-30-031120 EPA 300.0 643357 60331435001 MW-30-031120 EPA 300.0 643357 60331435001 MW-3 | 60331435004 | MW-L-031120  | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435007         MW-40-031120         EPA 200.7         644386         EPA 200.8         644596           60331435001         MW-37-031020         EPA 200.8         644518         EPA 200.8         644596           60331435002         MW-38-031020         EPA 200.8         644518         EPA 200.8         644596           60331435003         MW-K-031120         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-L-031120         EPA 200.8         644518         EPA 200.8         644596           60331435005         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435006         DUP-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         645527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60331435005 | MW-39-031120 | EPA 200.7       | 645571   | EPA 200.7         | 645733              |
| 60331435001         MW-37-031020         EPA 200.8         644518         EPA 200.8         644596           60331435002         MW-38-031020         EPA 200.8         644518         EPA 200.8         644596           60331435003         MW-K-031120         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-L-031120         EPA 200.8         644518         EPA 200.8         644596           60331435006         DIP-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         644596         644596           60331435002         MW-38-031020         SM 2540C         643742         644596         644596           60331435003         MW-K-031120         SM 2540C         643742         644596         644596           60331435004         MW-39-031120         SM 2540C         643742         645498         644593           60331435006         DUP-031120         SM 2540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60331435006 | DUP-031120   | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435002         MW-38-031020         EPA 200.8         644518         EPA 200.8         644596           60331435003         MW-K-031120         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-U-031120         EPA 200.8         644518         EPA 200.8         644596           60331435005         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         EPA 200.8         644596           60331435001         MW-38-031120         SM 2540C         643742         EPA 200.8         644596           60331435003         MW-K-031120         SM 2540C         643742         EPA 200.8         644596           60331435004         MW-L-031120         SM 2540C         643742         EPA 200.8         644598           60331435006         DUP-031120         SM 4500-H+B         645273         EPA 200.8         EPA 200.8           60331435001         MW-37-031020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60331435007 | MW-40-031120 | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435003         MW-K-031120         EPA 200.8         644518         EPA 200.8         644518         EPA 200.8         644596           60331435004         MW-W-1-031120         EPA 200.8         644518         EPA 200.8         644596           60331435006         DUP-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         FA 200.8         644596           60331435002         MW-38-031020         SM 2540C         643742         FA 200.8         644596         FA 200.8         FA 200.8         644596         FA 200.8         644596         644596         644596         644596         644598         644598         644598         644598         644598         644598         644598         644598         644598         644593         FA 200.8         644598         644593         644593         FA 200.8         644593         FA 200.8         644593         FA 200.8         644593         FA 200.8         644593 <td< td=""><td>60331435001</td><td>MW-37-031020</td><td>EPA 200.8</td><td>644518</td><td>EPA 200.8</td><td>644596</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60331435001 | MW-37-031020 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435004         MW-L-031120         EPA 200.8         644518         EPA 200.8         644596           60331435006         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-37-031020         SM 2540C         643527         FPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         645498         FPA 200.8         FPA 200.8           60331435002         MW-8-031120         SM 2540C         643527         FPA 200.8         FPA 200.8           60331435003         MW-K-031120         SM 2540C         643742         FPA 200.8         FPA 200.8           60331435004         MW-L-031120         SM 2540C         643742         FPA 200.8         FPA 200.8           60331435006         DUP-031120         SM 2540C         643742         FPA 200.8         FPA 200.8           60331435007         MW-40-031120         SM 2540C         643742         FPA 200.8         FPA 200.8           60331435001         MW-37-031020         SM 4500-H+B         645273         FPA 200.8         FPA 200.8         FPA 200.8         FPA 200.8 <t< td=""><td>60331435002</td><td>MW-38-031020</td><td>EPA 200.8</td><td>644518</td><td>EPA 200.8</td><td>644596</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60331435002 | MW-38-031020 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435005         MW-39-031120         EPA 200.8         644518         EPA 200.8         644596           60331435006         DUP-031120         EPA 200.8         644518         EPA 200.8         644596           60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         645498         FA 200.8         FA 200.8         644598           60331435002         MW-40-031120         SM 2540C         643527         FA 200.8         644598         FA 200.8         FA 200.8         644598         FA 200.8         FA 200.8         644598         FA 200.8         644598         FA 200.8         644598         FA 200.8         FA 200.8         644598         FA 200.8         FA 200.8         644598         FA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435003 | MW-K-031120  | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435006<br>60331435007         DUP-031120<br>MW-40-031120         EPA 200.8<br>EPA 200.8         644518<br>644518         EPA 200.8<br>EPA 200.8         644596<br>644596           60331435001         MW-37-031020         SM 2540C         643527         FPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         645498         FPA 200.8         FPA 200.8         644598           60331435002         MW-38-031020         SM 2540C         643527         FPA 200.8         FPA 200.8         FPA 200.8         FPA 200.8         FPA 200.8         644598           60331435002         MW-38-031120         SM 2540C         643742         643742         60331435003         MW-1-031120         SM 2540C         643742         60331435006         DUP-031120         SM 2540C         643742         643742         60331435006         FPA 200.0         644593         645273         FPA 200.8         644593         644593         FPA 200.8         644593         FPA 200.8         644593         FPA 200.8         644593         FPA 200.8         FPA 200.8         644682         FPA 200.8         FPA 200.8         644682         FPA 200.8         644682 <th< td=""><td>60331435004</td><td>MW-L-031120</td><td>EPA 200.8</td><td>644518</td><td>EPA 200.8</td><td>644596</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435004 | MW-L-031120  | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435007         MW-40-031120         EPA 200.8         644518         EPA 200.8         644596           60331435001         MW-37-031020         SM 2540C         643527         CANTER CONTROLL         CANTER CONTROLL <td>60331435005</td> <td>MW-39-031120</td> <td>EPA 200.8</td> <td>644518</td> <td>EPA 200.8</td> <td>644596</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60331435005 | MW-39-031120 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435001 MW-37-031020 SM 2540C 643527 60331435001 MW-37-031020 SM 2540C 645498 60331435002 MW-38-031020 SM 2540C 643527 60331435003 MW-K-031120 SM 2540C 643742 60331435004 MW-L-031120 SM 2540C 643742 60331435005 MW-39-031120 SM 2540C 643742 60331435006 DUP-031120 SM 2540C 643742 60331435007 MW-40-031120 SM 2540C 643742 60331435007 MW-40-031120 SM 2540C 643742 60331435001 MW-37-031020 SM 4500-H+B 645273 60331435002 MW-38-031020 SM 4500-H+B 644593 60331435003 MW-K-031120 SM 4500-H+B 644593 60331435004 MW-1-031120 SM 4500-H+B 644593 60331435005 MW-39-031120 SM 4500-H+B 644593 60331435006 DUP-031120 SM 4500-H+B 644682 60331435007 MW-40-031120 SM 4500-H+B 644682 60331435001 MW-37-031020 EPA 300.0 643357 60331435001 MW-37-031020 EPA 300.0 643357 60331435003 MW-K-031120 EPA 300.0 643357 60331435004 MW-L-031120 EPA 300.0 643357 60331435005 MW-38-031020 EPA 300.0 643357 60331435005 MW-38-031020 EPA 300.0 643357 60331435005 MW-38-031120 EPA 300.0 643357 60331435005 MW-38-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357                                                                                                                                                                                                                                                                                             | 60331435006 | DUP-031120   | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435001         MW-37-031020         SM 2540C         645498           60331435002         MW-88-031020         SM 2540C         643527           60331435003         MW-K-031120         SM 2540C         643742           60331435004         MW-L-031120         SM 2540C         643742           60331435005         MW-39-031120         SM 2540C         643742           60331435006         DUP-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435006         DUP-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435002         MW-38-031020         EPA 300.0         64335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435007 | MW-40-031120 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435002         MW-38-031020         SM 2540C         643527           60331435003         MW-K-031120         SM 2540C         643742           60331435004         MW-L-031120         SM 2540C         643742           60331435005         MW-39-031120         SM 2540C         643742           60331435006         DUP-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644682           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435001         MW-37-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         6433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435001 | MW-37-031020 | SM 2540C        | 643527   |                   |                     |
| 60331435003         MW-K-031120         SM 2540C         643742           60331435004         MW-L-031120         SM 2540C         643742           60331435005         MW-39-031120         SM 2540C         643742           60331435006         DUP-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644682           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435001         MW-37-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         643357           60331435005         MW-39-031120         EPA 300.0         643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435001 | MW-37-031020 | SM 2540C        | 645498   |                   |                     |
| 60331435004         MW-L-031120         SM 2540C         643742           60331435005         MW-39-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644593           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435001         MW-37-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         643357           60331435005         MW-39-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60331435002 | MW-38-031020 | SM 2540C        | 643527   |                   |                     |
| 60331435005         MW-39-031120         SM 2540C         643742           60331435006         DUP-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644593           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435001         MW-37-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         643357           60331435005         MW-39-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60331435003 | MW-K-031120  | SM 2540C        | 643742   |                   |                     |
| 60331435006         DUP-031120         SM 2540C         643742           60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644693           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435001         MW-37-031020         EPA 300.0         643357           60331435002         MW-38-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435005         MW-L-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60331435004 | MW-L-031120  | SM 2540C        | 643742   |                   |                     |
| 60331435007         MW-40-031120         SM 2540C         643742           60331435001         MW-37-031020         SM 4500-H+B         645273           60331435002         MW-38-031020         SM 4500-H+B         644593           60331435003         MW-K-031120         SM 4500-H+B         644593           60331435004         MW-L-031120         SM 4500-H+B         644593           60331435005         MW-39-031120         SM 4500-H+B         644682           60331435006         DUP-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435002         MW-38-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         643357           60331435005         MW-39-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60331435005 | MW-39-031120 | SM 2540C        | 643742   |                   |                     |
| 60331435001 MW-37-031020 SM 4500-H+B 645273 60331435002 MW-38-031020 SM 4500-H+B 644593 60331435003 MW-K-031120 SM 4500-H+B 644593 60331435004 MW-L-031120 SM 4500-H+B 644682 60331435005 MW-39-031120 SM 4500-H+B 644682 60331435006 DUP-031120 SM 4500-H+B 644682 60331435007 MW-40-031120 SM 4500-H+B 644682 60331435001 MW-37-031020 EPA 300.0 643357 60331435001 MW-37-031020 EPA 300.0 645341 60331435002 MW-38-031020 EPA 300.0 643357 60331435003 MW-K-031120 EPA 300.0 643357 60331435004 MW-L-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60331435006 | DUP-031120   | SM 2540C        | 643742   |                   |                     |
| 60331435002 MW-38-031020 SM 4500-H+B 644593 60331435003 MW-K-031120 SM 4500-H+B 644593 60331435004 MW-L-031120 SM 4500-H+B 644593 60331435005 MW-39-031120 SM 4500-H+B 644682 60331435006 DUP-031120 SM 4500-H+B 644682 60331435007 MW-40-031120 SM 4500-H+B 644682 60331435001 MW-37-031020 EPA 300.0 643357 60331435001 MW-37-031020 EPA 300.0 643357 60331435002 MW-38-031020 EPA 300.0 643357 60331435003 MW-K-031120 EPA 300.0 643357 60331435004 MW-L-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60331435007 | MW-40-031120 | SM 2540C        | 643742   |                   |                     |
| 60331435003       MW-K-031120       SM 4500-H+B       644593         60331435004       MW-L-031120       SM 4500-H+B       644593         60331435005       MW-39-031120       SM 4500-H+B       644682         60331435006       DUP-031120       SM 4500-H+B       644682         60331435007       MW-40-031120       SM 4500-H+B       644682         60331435001       MW-37-031020       EPA 300.0       643357         60331435001       MW-37-031020       EPA 300.0       645341         60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60331435001 | MW-37-031020 | SM 4500-H+B     | 645273   |                   |                     |
| 60331435004       MW-L-031120       SM 4500-H+B       644593         60331435005       MW-39-031120       SM 4500-H+B       644682         60331435007       MW-40-031120       SM 4500-H+B       644682         60331435001       MW-37-031020       EPA 300.0       643357         60331435001       MW-37-031020       EPA 300.0       645341         60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60331435002 | MW-38-031020 | SM 4500-H+B     | 644593   |                   |                     |
| 60331435005 MW-39-031120 SM 4500-H+B 644682 60331435007 MW-40-031120 SM 4500-H+B 644682 60331435007 MW-40-031120 SM 4500-H+B 644682 60331435001 MW-37-031020 EPA 300.0 643357 60331435001 MW-37-031020 EPA 300.0 643357 60331435002 MW-38-031020 EPA 300.0 643357 60331435003 MW-K-031120 EPA 300.0 643357 60331435004 MW-L-031120 EPA 300.0 643357 60331435005 MW-39-031120 EPA 300.0 643357 60331435006 DUP-031120 EPA 300.0 643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60331435003 | MW-K-031120  | SM 4500-H+B     | 644593   |                   |                     |
| 60331435006         DUP-031120         SM 4500-H+B         644682           60331435007         MW-40-031120         SM 4500-H+B         644682           60331435001         MW-37-031020         EPA 300.0         643357           60331435002         MW-38-031020         EPA 300.0         643357           60331435003         MW-K-031120         EPA 300.0         643357           60331435004         MW-L-031120         EPA 300.0         643357           60331435005         MW-39-031120         EPA 300.0         643357           60331435006         DUP-031120         EPA 300.0         643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60331435004 | MW-L-031120  | SM 4500-H+B     | 644593   |                   |                     |
| 60331435007       MW-40-031120       SM 4500-H+B       644682         60331435001       MW-37-031020       EPA 300.0       643357         60331435001       MW-37-031020       EPA 300.0       645341         60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60331435005 | MW-39-031120 | SM 4500-H+B     | 644682   |                   |                     |
| 60331435001       MW-37-031020       EPA 300.0       643357         60331435001       MW-37-031020       EPA 300.0       645341         60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60331435006 | DUP-031120   | SM 4500-H+B     | 644682   |                   |                     |
| 60331435001       MW-37-031020       EPA 300.0       645341         60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60331435007 | MW-40-031120 | SM 4500-H+B     | 644682   |                   |                     |
| 60331435002       MW-38-031020       EPA 300.0       643357         60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60331435001 | MW-37-031020 | EPA 300.0       | 643357   |                   |                     |
| 60331435003       MW-K-031120       EPA 300.0       643357         60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60331435001 | MW-37-031020 | EPA 300.0       | 645341   |                   |                     |
| 60331435004       MW-L-031120       EPA 300.0       643357         60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60331435002 | MW-38-031020 | EPA 300.0       | 643357   |                   |                     |
| 60331435005       MW-39-031120       EPA 300.0       643357         60331435006       DUP-031120       EPA 300.0       643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60331435003 | MW-K-031120  | EPA 300.0       | 643357   |                   |                     |
| <b>60331435006 DUP-031120</b> EPA 300.0 643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60331435004 | MW-L-031120  | EPA 300.0       | 643357   |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60331435005 | MW-39-031120 | EPA 300.0       | 643357   |                   |                     |
| <b>60331435007 MW-40-031120</b> EPA 300.0 643357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60331435006 | DUP-031120   | EPA 300.0       | 643357   |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60331435007 | MW-40-031120 | EPA 300.0       | 643357   |                   |                     |



### Sample Condition Upon Receipt



| Client Name: <u>Evergy Kansas Central</u>                                                              |                      |                                                                            |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|
|                                                                                                        | EX 🗆 ECI 🗆           | Pace □ Xroads □ Client 🗹 Other □                                           |
| Tracking #: Pace                                                                                       | e Shipping Label Use | d? Yes □ No 🗹                                                              |
| Custody Seal on Cooler/Box Present: Yes □ No 🗹                                                         | Seals intact: Yes    | _                                                                          |
| Packing Material: Bubble Wrap □ Bubble Bags □                                                          | Foam 🗆               | None 🗆 Other 🗗 🔁 lc                                                        |
| Thermometer Used: T-299 Type of                                                                        | Ice: Wet Blue No     |                                                                            |
| Cooler Temperature (°C): As-read 1.6 Corr. Factor                                                      | or_tl.0_Correc       | ted 2.4 Date and initials of person examining contents: 3.11.20            |
| Temperature should be above freezing to 6°C                                                            |                      |                                                                            |
| Chain of Custody present:                                                                              | ØYes □No □N/A        |                                                                            |
| Chain of Custody relinquished:                                                                         | ØYes □No □N/A        |                                                                            |
| Samples arrived within holding time:                                                                   | ØYes □No □N/A        |                                                                            |
| Short Hold Time analyses (<72hr):                                                                      | □Yes ØNo □N/A        |                                                                            |
| Rush Turn Around Time requested:                                                                       | □Yes ☑No □N/A        |                                                                            |
| Sufficient volume:                                                                                     | ØYes □No □N/A        |                                                                            |
| Correct containers used:                                                                               | ⊡fyes □No □N/A       |                                                                            |
| Pace containers used:                                                                                  | ØYes □No □N/A        |                                                                            |
| Containers intact:                                                                                     | ØYes □No □N/A        |                                                                            |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                 | □Yes □No ☑N/A        |                                                                            |
| Filtered volume received for dissolved tests?                                                          | □Yes □No ☑N/A        |                                                                            |
| Sample labels match COC: Date / time / ID / analyses                                                   | ØYes □No □N/A        |                                                                            |
| Samples contain multiple phases? Matrix: WT                                                            | □Yes ☑No □N/A        |                                                                            |
| Containers requiring pH preservation in compliance?                                                    | ØYes □No □N/A        | List sample IDs, volumes, lot #'s of preservative and the date/time added. |
| (HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) | 3173                 |                                                                            |
| Cyanide water sample checks:                                                                           |                      |                                                                            |
| Lead acetate strip turns dark? (Record only)                                                           | □Yes □No             |                                                                            |
| Potassium iodide test strip turns blue/purple? (Preserve)                                              | □Yes □No             |                                                                            |
| Trip Blank present:                                                                                    | □Yes 🗹No □N/A        |                                                                            |
| Headspace in VOA vials ( >6mm):                                                                        | □Yes □No ☑N/A        |                                                                            |
| Samples from USDA Regulated Area: State:                                                               | □Yes □No ☑N/A        |                                                                            |
| Additional labels attached to 5035A / TX1005 vials in the field?                                       |                      |                                                                            |
| Client Notification/ Resolution: Copy COC to                                                           | Client? Y / N        | Field Data Required? Y / N                                                 |
| Person Contacted: Date/Ti                                                                              | me:                  |                                                                            |
| Comments/ Resolution                                                                                   |                      |                                                                            |
|                                                                                                        |                      |                                                                            |
| Project Manager Review:                                                                                | Dat                  | B.                                                                         |



## CHAIN-OF-CU<sup>c</sup> ODY / Analytical Request Document

The Chain-of-Custody is a L. \_ DOCUMENT. All relevant fields must be completed accurately.

| Sectio            | n A                          |         |                                        | Section        | В                         |             |           |                |           |            | C                 |                  |                                |       |        |                                               |       |                   |         |               |             |                      |        |         |     |        | -   |                   |                          |                                |                |          |
|-------------------|------------------------------|---------|----------------------------------------|----------------|---------------------------|-------------|-----------|----------------|-----------|------------|-------------------|------------------|--------------------------------|-------|--------|-----------------------------------------------|-------|-------------------|---------|---------------|-------------|----------------------|--------|---------|-----|--------|-----|-------------------|--------------------------|--------------------------------|----------------|----------|
| Require<br>Compar | ed Client Information:       | A 1 1 C | NO OFFICE ALL INC.                     | Required       | Project 1                 | nformation: |           |                |           |            |                   | ction<br>oice In | nformat                        | tion: |        |                                               |       |                   |         |               |             |                      |        |         |     |        |     | Page              | ) <b>:</b>               | of                             |                |          |
| Address           | 22 (22)(21)(22)(23)          |         | AS CENTRAL, INC.                       |                |                           | sa Michels  |           |                |           |            | Atte              | ntion:           | 5                              |       | unts   | - 60                                          |       |                   |         |               |             |                      |        |         |     |        | _   |                   |                          |                                |                |          |
| Address           | Section and a section of the |         | y Center (LEC)                         | Copy To:       |                           | Morrison,   |           |                |           |            | Con               | npany            | Name                           | : E   | VER    | GY                                            | (ANS  | SAS               | CEN     | ITRA          | AL, I       | NOR                  | EGI    | JLAT    | DRY | AGE    | NCY |                   |                          |                                |                |          |
|                   |                              |         | Topeka, KS 66612                       |                |                           | w Hare, Ta  |           |                | intha Kar | ney        | Add               | ress:            |                                |       | E AS   |                                               |       |                   |         |               |             | ī                    |        | NPDES   | _   |        |     |                   | TER [                    | DRINI                          | (ING WAT       | TED.     |
| Email To          | melissa.mid                  | heis    | @evergy.com                            | Purchase       | Order No                  | = 10LEC     | -0000018  | 165            |           |            |                   | Quote            |                                | _     |        |                                               |       |                   | _       |               |             | ٦,                   |        | UST     | F   |        | CRA | 10 117            | (, E, )                  |                                |                | ren      |
| Phone:            | 785-575-8113                 | F       | ax:                                    | Project Na     | ime:                      | EC Inactiv  | e Ash Pon | ds CCR         |           |            | Pace              | rence:<br>Proje  |                                | Jasm  | ine A  | mer                                           | in, 9 | 13-5              | 63-1    | 403           |             | -                    | _      | Locati  |     |        | JNA |                   |                          | OTHE                           | -H             |          |
| Reques            | ted Due Date/TAT:            | 7       | day                                    | Project Nu     | ımber:                    | 1797        | 78-0      | 28             |           | _          |                   | ager:<br>Profile |                                | 9655. |        |                                               |       |                   |         |               |             | -1                   | Site:  |         |     |        | KS  |                   |                          |                                |                |          |
|                   |                              |         |                                        |                |                           | 15(/        | 10-0      | 30             |           |            |                   |                  |                                |       |        |                                               | -     | Т                 |         | 0011          | oot.        | ol A                 | - alve | STAT    |     | 1 ()/0 |     |                   |                          |                                |                |          |
|                   | Section D                    |         | Valid Matrix C                         | odes           | 2                         |             |           |                |           | Т          | Т                 | Т                | _                              |       |        |                                               |       | =                 |         | equ           | este        | AI                   | lalys  | sis Fil | ere | 1 (Y/N | )   | -                 |                          |                                |                |          |
|                   | Required Client Inform       | ition   | MATRIX<br>DRINKING WATER               | CODE<br>DW     | o to                      | 5           | COLL      | ECTED          |           | 1          |                   | L                | F                              | rese  | rvativ | es/                                           |       | N/A               |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
|                   |                              |         | WATER                                  | WT<br>WW       | (see valid codes to left) | COM         | POSITE    | 00140          | 0.75      | NO.        |                   |                  |                                |       |        |                                               |       |                   | П       |               |             | П                    |        | П       |     |        |     |                   |                          |                                |                |          |
|                   |                              |         | PRODUCT<br>SOIL/SOLID                  | P<br>SL        | valid                     |             | ART       | COMPO<br>END/G | RAB       | COLLECTION |                   |                  | П                              |       |        |                                               |       |                   | *       | *             |             |                      |        |         |     |        |     | (N/K)             |                          |                                |                |          |
|                   | SAMPI                        | ΕI      | D OIL WIPE AIR                         | OL<br>WP       | (see                      | ST ST       | 1         |                |           |            | RS.               |                  | Н                              |       |        |                                               |       | <del></del>       | Metals* | Total Metals* |             |                      |        |         |     |        |     | ے<br>و            |                          |                                |                |          |
|                   | (A-Z, 0-<br>Sample IDs MUS   |         | OTHER                                  | AR<br>OT<br>TS |                           |             |           |                |           | P AT       | CONTAINERS        | 70               |                                |       |        |                                               |       | Test              | ₹       | Se            | S04         |                      |        |         |     |        |     | ori:              |                          |                                |                |          |
|                   | Sample IDS WOS               | 001     | DNIQUE                                 |                | 6                         | <u> </u>    |           |                |           | TEMP       | Įķ                | erve             |                                |       | Ш      | , -                                           | 5     | sis               | Total   | otal          |             | TDS                  |        |         |     |        |     | [<br>년            |                          | 001                            | 1135           |          |
| ITEM #            |                              |         |                                        |                | MATRIX CODE               |             |           |                |           | SAMPLE     | l $\frac{\pi}{2}$ | Unpreserved      | o o                            | S S   | 님      | SSO                                           | - I   | la<br>J           | 8       | 7             | ਨੀ          | $\Gamma \mid C$      |        |         |     |        |     | dua               | 600                      | 331                            | 1400           |          |
| _E_               |                              |         |                                        |                | Σ¥                        | DATE        | TIME      | DATE           | TIME      | SAN        | # OF              | P.               | H <sub>2</sub> SO <sub>4</sub> | S S   | NaOH   | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Other | <b>↓</b> Analysis | 200.8   | 200.7         | 300: CI, F, | 2540C TD<br>4500 H+R |        |         |     |        |     | Residual Chlorine | Pac                      | e Project                      | No / Lah       | , ID     |
| 1                 | /nw-                         | 37      | -031020                                |                | WT                        | 03/10       | 1525      |                |           |            | 3                 | X                | )                              | <     |        |                                               |       |                   | X       | ×             | - 1         | K X                  |        |         |     |        |     |                   | 1 40.                    | o i roject                     | 1103 LaL       | 71.0.    |
| 2                 |                              | 36      |                                        | 31020          | 1                         | 03/10       |           |                |           |            | 1                 | X                | 5                              | 4     |        |                                               |       | 1                 | X       | X             | V           | ××                   | 1      |         | 1   | $\top$ |     | $\top$            |                          |                                |                |          |
| 3                 | MW-                          | ς.      | 031120                                 |                |                           | 03/11       | 810       |                |           |            |                   | X                | )                              |       |        |                                               |       | 1                 | ×       | X             | X           | 41                   | (      |         |     |        |     |                   |                          |                                |                |          |
| 4                 | MW- 0                        |         | 031120                                 |                |                           | 03/11       | 930       |                |           |            | H                 | X                | ×                              |       |        |                                               |       | 1                 | X       | X             | X           | XX                   |        |         |     |        |     |                   |                          |                                |                |          |
| 5                 |                              | 9.      | 1000                                   |                |                           | 03(11       | 1045      |                |           |            |                   | 4                | X                              |       |        |                                               |       |                   | X       | 1             | X)          | XX                   |        |         |     |        |     |                   |                          |                                |                |          |
| 6                 | A                            | D       | Lp-031120                              |                | $\sqcup$                  | 03/11       | 1055      |                |           |            |                   | X                | ,                              | 4     |        |                                               |       |                   | X       | X             | N           | X X                  |        |         |     |        |     | $\top$            |                          |                                |                |          |
| 7                 | MW-40                        | 2 -     | 031120                                 |                | 4                         | 03/11       | 1240      |                |           |            | $\forall$         | X                | )                              |       |        |                                               |       |                   | X.      | X,            | XJ          | (X                   |        |         |     |        |     |                   |                          |                                |                |          |
| 8                 |                              |         |                                        |                | $\vdash$                  | _           |           |                |           |            |                   | Ц                |                                |       |        |                                               |       |                   |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
| 9                 |                              |         |                                        |                |                           |             |           |                |           |            |                   |                  |                                |       |        |                                               |       |                   |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
| 10                |                              |         |                                        |                | -                         |             |           |                |           |            |                   |                  |                                |       | Ц      |                                               |       |                   |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
| 11                |                              | -       |                                        |                | -                         | -           |           |                |           |            | _                 |                  |                                |       |        |                                               | Ш     |                   |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
| 12                | ADDITION.                    |         | IIII III III III III III III III III I |                |                           |             |           |                |           | _          | _                 |                  | 4                              |       |        |                                               |       |                   |         |               |             |                      |        |         |     |        |     |                   |                          |                                |                |          |
| 200.7 To          | ai Metals*: B, Ca, Ba,       |         | MMENTS                                 | -              |                           | UISHED BY   |           |                | DATE      | _          | _                 | IME              | _                              |       | Α      | CCE                                           | PTED  | BY/               | AFF     | LIAT          | ION         |                      |        | DATE    |     | TIME   | 2   | .6 ?              | SAMI                     | PLE CONDI                      | TIONS          |          |
|                   | al Metals**: As, Mo          |         |                                        | Eli            | tre                       | drick       | 501       | なるも            | 03/11     |            | 14                | 15               | -                              | =Bc   | عد     | سيا                                           | 4     | 18                | a u     |               |             |                      | 3/ K   | 2.0     | 10  | 1.20   | 7   | 7-65              | ч                        | 7                              | y              |          |
| .00.0 10          | ai Metais . As, Mo           |         |                                        |                |                           |             |           |                |           |            |                   |                  |                                | ==0   |        |                                               |       |                   |         |               |             |                      |        |         |     |        |     | 3.8               | 4                        |                                | 1              |          |
|                   |                              |         |                                        |                |                           |             |           |                |           |            |                   |                  |                                |       |        |                                               |       |                   |         |               |             |                      |        |         | 1   |        | -/- | 2.00              |                          |                                | 1              |          |
|                   |                              |         |                                        |                |                           |             |           |                |           |            |                   |                  | -                              |       | _      |                                               |       |                   | _       | _             | _           |                      | -      |         | +-  |        | +   | $\overline{}$     |                          |                                |                |          |
| Pa                |                              |         |                                        |                |                           |             | SAMPI F   | R NAME AI      | ND SIGNA  | THE        |                   |                  |                                |       |        |                                               | -     |                   | _       |               | -           |                      | _      | _       |     |        | +   |                   |                          | 70                             |                |          |
| ge :              |                              |         |                                        |                |                           |             |           | RINT Name      |           |            | _                 | , (              | _                              | 4     |        | ٨                                             |       |                   |         | _             |             |                      | _      |         |     |        | _   | ္င                | uo pg<br>(N              | Seale<br>Y/N)                  | Intac          |          |
| Page 34 of 34     |                              |         |                                        |                |                           |             | -         |                |           |            |                   | 11               |                                |       | re     | dr                                            | Ch    | (5)               | DAT     | E C:          | gned        |                      |        | ,       |     |        | _   | Temp ir           | Received on<br>Ice (Y/N) | Custody Sealed<br>Cooler (Y/N) | Samples Intact | <u>ا</u> |
| f 34              |                              |         |                                        |                |                           |             |           | IGNATURE       | OT SAMP   | LER:       | ٤                 | li               | 04                             | m     |        | 7                                             |       |                   | (MI     | //DD/         | YY):        | - (                  | 03     | lul     | 2   | 0      |     | ř                 | - A                      | Co                             | Sam            |          |





April 02, 2020

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

#### Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 12, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

**Enclosures** 

cc: Andrew Hare, Evergy, Inc.
Laura Hines, Evergy, Inc.
Jake Humphrey, Evergy, Inc.
Tabitha Hylton, KCP&L & Westar, Evergy Companies
Samantha Kaney, Haley & Aldrich
Jared Morrison, Evergy, Inc.
Melanie Satanek, Haley & Aldrich, Inc.
Danielle Zinmaster, Haley & Aldrich







#### **CERTIFICATIONS**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Texas/TNI Certification #: T104704188-17-3

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



#### **SAMPLE SUMMARY**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60331669001 | MW-37-031020 | Water  | 03/10/20 15:25 | 03/12/20 09:10 |
| 60331669002 | MW-38-031020 | Water  | 03/10/20 17:00 | 03/12/20 09:10 |
| 60331669003 | MW-K-031120  | Water  | 03/11/20 08:10 | 03/12/20 09:10 |
| 60331669004 | MW-L-031120  | Water  | 03/11/20 09:30 | 03/12/20 09:10 |
| 60331669005 | MW-39-031120 | Water  | 03/11/20 10:45 | 03/12/20 09:10 |
| 60331669006 | DUP-031120   | Water  | 03/11/20 10:55 | 03/12/20 09:10 |
| 60331669007 | MW-40-031120 | Water  | 03/11/20 12:40 | 03/12/20 09:10 |



#### **SAMPLE ANALYTE COUNT**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Lab ID      | Sample ID    | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|--------------------------|----------|----------------------|------------|
| 60331669001 | MW-37-031020 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669002 | MW-38-031020 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669003 | MW-K-031120  | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669004 | MW-L-031120  | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669005 | MW-39-031120 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669006 | DUP-031120   | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669007 | MW-40-031120 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-37-031020</b> PWS: | <b>Lab ID:</b> 60331669<br>Site ID: | O001 Collected: 03/10/20 15:25<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------------|-------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                              | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Radium-226                       | EPA 903.1                           | -0.153 ± 0.265 (0.667)<br>C:NA T:92%           | pCi/L     | 04/02/20 11:35 | 13982-63-3    |      |
|                                  | Pace Analytical Serv                | rices - Greensburg                             |           |                |               |      |
| Radium-228                       | EPA 904.0                           | 0.291 ± 0.339 (0.710)<br>C:79% T:81%           | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                                  | Pace Analytical Serv                | rices - Greensburg                             |           |                |               |      |
| Total Radium                     | Total Radium<br>Calculation         | 0.291 ± 0.430 (0.710)                          | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-38-031020</b> PWS: | Lab ID: 6033<br>Site ID:    | <b>1669002</b> Collected: 03/10/20 17:00 Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                       | EPA 903.1                   | 0.107 ± 0.297 (0.577)<br>C:NA T:93%                   | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                                  | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                       | EPA 904.0                   | 0.138 ± 0.324 (0.721)<br>C:78% T:84%                  | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                                  | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.245 ± 0.440 (0.721)                                 | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: MW-K-031120<br>PWS: | <b>Lab ID: 60331</b> 0 Site ID: | 669003 Collected: 03/11/20 08:10 Sample Type: | Received: | 03/12/20 09:10 I | Matrix: Water |      |
|-----------------------------|---------------------------------|-----------------------------------------------|-----------|------------------|---------------|------|
| Parameters                  | Method                          | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed         | CAS No.       | Qual |
|                             | Pace Analytical S               | ervices - Greensburg                          |           | •                |               |      |
| Radium-226                  | EPA 903.1                       | 0.0529 ± 0.311 (0.635)<br>C:NA T:94%          | pCi/L     | 04/02/20 11:35   | 13982-63-3    |      |
|                             | Pace Analytical S               | ervices - Greensburg                          |           |                  |               |      |
| Radium-228                  | EPA 904.0                       | 1.16 ± 0.434 (0.642)<br>C:83% T:90%           | pCi/L     | 04/01/20 11:28   | 15262-20-1    |      |
|                             | Pace Analytical S               | ervices - Greensburg                          |           |                  |               |      |
| Total Radium                | Total Radium<br>Calculation     | 1.21 ± 0.534 (0.642)                          | pCi/L     | 04/02/20 14:00   | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: MW-L-031120<br>PWS: | Lab ID: 60331<br>Site ID: | 1669004 Collected: 03/11/20 09:30<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|-----------------------------|---------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                    | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical           | Services - Greensburg                             |           |                |               |      |
| Radium-226                  | EPA 903.1                 | -0.0604 ± 0.275 (0.560)<br>C:NA T:84%             | pCi/L     | 04/02/20 11:35 | 13982-63-3    |      |
|                             | Pace Analytical           | Services - Greensburg                             |           |                |               |      |
| Radium-228                  | EPA 904.0                 | 0.939 ± 0.418 (0.679)<br>C:77% T:86%              | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                             | Pace Analytical           | Services - Greensburg                             |           |                |               |      |
| Total Radium                | Total Radium Calculation  | 0.939 ± 0.500 (0.679)                             | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-39-031120</b> PWS: | <b>Lab ID: 6033</b> 1 Site ID: | 669005 Collected: 03/11/20 10:45<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------------|--------------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                         | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical S              | Services - Greensburg                            |           |                |               |      |
| Radium-226                       | EPA 903.1                      | 0.000 ± 0.429 (0.860)<br>C:NA T:89%              | pCi/L     | 04/02/20 11:35 | 13982-63-3    |      |
|                                  | Pace Analytical S              | Services - Greensburg                            |           |                |               |      |
| Radium-228                       | EPA 904.0                      | 0.484 ± 0.340 (0.648)<br>C:79% T:87%             | pCi/L     | 04/01/20 11:28 | 15262-20-1    |      |
|                                  | Pace Analytical S              | Services - Greensburg                            |           |                |               |      |
| Total Radium                     | Total Radium<br>Calculation    | 0.484 ± 0.547 (0.860)                            | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: DUP-031120<br>PWS: | Lab ID: 6033<br>Site ID:    | <b>1669006</b> Collected: 03/11/20 10:55 Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.000 ± 0.313 (0.677)<br>C:NA T:87%                   | pCi/L     | 04/02/20 11:35 | 13982-63-3    |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.116 ± 0.315 (0.706)<br>C:78% T:83%                  | pCi/L     | 04/01/20 11:28 | 15262-20-1    |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.116 ± 0.444 (0.706)                                 | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-40-031120</b> PWS: | <b>Lab ID: 60331</b> Site ID: | 669007 Collected: 03/11/20 12:40 Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------------|-------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                        | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Radium-226                       | EPA 903.1                     | 0.348 ± 0.403 (0.651)<br>C:NA T:96%           | pCi/L     | 04/02/20 11:35 | 13982-63-3    |      |
|                                  | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Radium-228                       | EPA 904.0                     | 0.205 ± 0.276 (0.590)<br>C:83% T:90%          | pCi/L     | 04/01/20 11:29 | 15262-20-1    |      |
|                                  | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Total Radium                     | Total Radium<br>Calculation   | 0.553 ± 0.488 (0.651)                         | pCi/L     | 04/02/20 14:00 | 7440-14-4     |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

QC Batch: 388333 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60331669001, 60331669002, 60331669003, 60331669004, 60331669005, 60331669006, 60331669007

METHOD BLANK: 1881033 Matrix: Water

Associated Lab Samples: 60331669001, 60331669002, 60331669003, 60331669004, 60331669005, 60331669006, 60331669007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.470 ± 0.349 (0.684) C:82% T:90%
 pCi/L
 04/01/20 11:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

QC Batch: 388332 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60331669001, 60331669002, 60331669003, 60331669004, 60331669005, 60331669006, 60331669007

METHOD BLANK: 1881032 Matrix: Water

Associated Lab Samples: 60331669001, 60331669002, 60331669003, 60331669004, 60331669005, 60331669006, 60331669007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.225 ± 0.234 (0.595) C:NA T:90%
 pCi/L
 04/02/20 11:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 04/02/2020 02:09 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

Date: 04/02/2020 02:09 PM

| Lab ID      | Sample ID    | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|--------------------------|----------|-------------------|---------------------|
| 60331669001 | MW-37-031020 | EPA 903.1                | 388332   |                   |                     |
| 60331669002 | MW-38-031020 | EPA 903.1                | 388332   |                   |                     |
| 60331669003 | MW-K-031120  | EPA 903.1                | 388332   |                   |                     |
| 60331669004 | MW-L-031120  | EPA 903.1                | 388332   |                   |                     |
| 60331669005 | MW-39-031120 | EPA 903.1                | 388332   |                   |                     |
| 60331669006 | DUP-031120   | EPA 903.1                | 388332   |                   |                     |
| 60331669007 | MW-40-031120 | EPA 903.1                | 388332   |                   |                     |
| 60331669001 | MW-37-031020 | EPA 904.0                | 388333   |                   |                     |
| 60331669002 | MW-38-031020 | EPA 904.0                | 388333   |                   |                     |
| 60331669003 | MW-K-031120  | EPA 904.0                | 388333   |                   |                     |
| 60331669004 | MW-L-031120  | EPA 904.0                | 388333   |                   |                     |
| 60331669005 | MW-39-031120 | EPA 904.0                | 388333   |                   |                     |
| 60331669006 | DUP-031120   | EPA 904.0                | 388333   |                   |                     |
| 60331669007 | MW-40-031120 | EPA 904.0                | 388333   |                   |                     |
| 60331669001 | MW-37-031020 | Total Radium Calculation | 390899   |                   |                     |
| 60331669002 | MW-38-031020 | Total Radium Calculation | 390899   |                   |                     |
| 60331669003 | MW-K-031120  | Total Radium Calculation | 390899   |                   |                     |
| 60331669004 | MW-L-031120  | Total Radium Calculation | 390899   |                   |                     |
| 60331669005 | MW-39-031120 | Total Radium Calculation | 390899   |                   |                     |
| 60331669006 | DUP-031120   | Total Radium Calculation | 390899   |                   |                     |
| 60331669007 | MW-40-031120 | Total Radium Calculation | 390899   |                   |                     |



## CHAIN-OF-CU ODY / Analytical Request Document

The Chain-of-Custody is a L \_\_\_\_\_ DOCUMENT. All relevant fields must be completed accurately.

| Section Requirements | on A<br>ed Client Information:                                       |                                                                           | Section E<br>Required P        |                                                                   | fo. um      |               |                        |            |                           |                                   | tion C             |         |                |            |          |                       |               |                     |                  |                    |         |             |                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | <del></del>              |               |                         |          |
|----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|-------------|---------------|------------------------|------------|---------------------------|-----------------------------------|--------------------|---------|----------------|------------|----------|-----------------------|---------------|---------------------|------------------|--------------------|---------|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|---------------|-------------------------|----------|
| Compa                |                                                                      | NSAS CENTRAL, INC.                                                        | Report To:                     | •                                                                 |             |               |                        | <u>,</u>   |                           |                                   | ice Info<br>ntion: | rmation |                | . 173      |          |                       |               |                     |                  | 1                  |         |             |                     | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page:                   |                          | of            |                         |          |
| Addres               |                                                                      | ergy Center (LEC)                                                         | _L                             |                                                                   | Morrison,   | lako Hum      | phrov L                | auro Uino  |                           |                                   |                    |         | counts         | -          |          |                       |               |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| <u> </u>             |                                                                      | Ave, Topeka, KS 66612                                                     |                                |                                                                   |             |               |                        |            |                           | COIII                             | рапун              | ame:    | EVE            | HGY        | KANS     | SAS                   | CENT          | TRAL,               | INC              | REG                | ULAT    | ORY /       | AGEN                | CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,405                   |                          | e Compression | Agus an tagaig          |          |
| Email T              |                                                                      | els@everav.com                                                            | _£                             |                                                                   | v Hare, Ta  |               |                        | antha Kar  | теу                       | Addr                              |                    | SA      | ME A           | SA         |          |                       |               |                     |                  | Γ                  | NPDES   | s F         | GRO                 | DUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATE                    | R ["                     | DRINKI        | NG WATER                | _        |
|                      | 785-575-8113                                                         | Fax:                                                                      |                                |                                                                   | 10LEC-      |               |                        |            |                           | Pace<br>Refer                     | Quote<br>ence:     |         |                |            |          |                       |               |                     |                  | Г                  | UST     |             | RC                  | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | Г                        | OTHER         | 3                       |          |
|                      |                                                                      |                                                                           | Project Nam                    |                                                                   | EC Inactiv  |               |                        |            |                           | Pace<br>Mana                      | Project<br>ger:    | Jas     | mine           | Ame        | rin, 9   | 13-5                  | 63-14         | 03                  |                  | Site               | Locati  | on          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| neques               | ted Due Date/TAT:                                                    | 15 day                                                                    | Project Num                    | nber; /                                                           | 1297        | 78- <i>03</i> | 38                     |            |                           | Pace                              | Profile #          | 965     | 55, 1          |            |          |                       |               |                     |                  | Park A.<br>Table 1 | STAT    |             | P                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                          |               |                         |          |
|                      |                                                                      |                                                                           |                                |                                                                   |             |               |                        |            |                           | 1                                 |                    |         |                | ·          |          | T                     | Re            | aues                | ted /            | nalv               | sis Fil |             | (Y/N)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| ITEM #               | Section D Required Client Informati SAMPL (A-Z, 0-9, Sample IDs MUST | DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL WIPE AIR () OTHER | CODE DW WT WW P SL OL WP AR CT | MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) | ST.         | POSITE        | ECTED<br>COMP<br>END/C | GRAB       | SAMPLE TEMP AT COLLECTION | l 🗒                               | Unpreserved        |         | HCI<br>NaOH    |            | Wetnanol | ↓Analysis Test↓ v/ N↓ | Radium-226    |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Residual Chlorine (Y/N) |                          |               |                         |          |
|                      | ^^ 1                                                                 |                                                                           |                                |                                                                   |             | TIME          | DATE                   | TIME       | γŞ                        |                                   |                    | 全全      | 되물             | g:         | ğ        | ₹                     | Rac           | 힐                   |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | æ                       | Pace                     | Project N     | lo./ Lab I.D <u>.</u> / |          |
| 1                    |                                                                      | -031020                                                                   |                                | 7                                                                 |             | 1525          |                        |            | _                         | 13                                | 1                  | X       |                |            |          |                       | 人人            | ( )                 |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | П                       |                          | ·             | a i                     | 7        |
| 2                    |                                                                      | -031020                                                                   |                                | <b>₩</b>                                                          | 03/10       |               |                        |            |                           | Ц                                 | 11                 | X       |                |            |          |                       | Уý            | <u> </u>            |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          | -···          | 03                      | )        |
| 3                    |                                                                      | 5-031120                                                                  |                                | 1-                                                                | 03/11       |               |                        |            |                           | L                                 | 1                  | X       |                |            |          |                       | X )           |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               | 003                     |          |
| 4                    |                                                                      | 031120                                                                    |                                | 1-                                                                | 03/11       | 930           |                        |            |                           | 1                                 |                    | X       |                |            |          |                       | K y           | \ <u>X</u>          |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               | My                      | 7        |
| 5<br>6               |                                                                      |                                                                           |                                | 1-                                                                | 03/11       | 1045          |                        | ļ          |                           | $oxed{oldsymbol{oldsymbol{eta}}}$ |                    | X       |                |            |          |                       | K X           | $\Delta$            |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               | 05                      |          |
| 7                    | Dup-03<br>MW-40                                                      | 13112 D                                                                   |                                | $\overline{\Psi}$                                                 | 03/4        | 1055          |                        |            | -                         | 1                                 |                    | X.      |                |            |          |                       | X 1           | $\langle X \rangle$ |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               | 100                     |          |
|                      | 7:100                                                                | -031120                                                                   |                                |                                                                   | 03/11       | 1270          |                        |            |                           | 4                                 | <u> </u>           | X       |                |            |          |                       | X X           |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               | 000                     |          |
| 8                    |                                                                      |                                                                           |                                |                                                                   | <u> </u>    |               |                        |            | <u> </u>                  |                                   |                    | 11      |                | 4          |          |                       |               |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| 9                    |                                                                      |                                                                           |                                | _                                                                 |             |               |                        |            | _                         | <u> </u>                          |                    | 11      |                |            |          |                       |               |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         | ٦        |
| 10<br>11             |                                                                      |                                                                           |                                |                                                                   |             |               |                        | ļ          |                           |                                   |                    |         |                |            |          |                       |               | _                   |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| 12                   |                                                                      |                                                                           |                                |                                                                   |             |               | ···                    | ļ          |                           |                                   |                    | 4-4     |                |            |          |                       |               |                     | _                |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
|                      | ADDITIONAL                                                           | COMMENTS                                                                  |                                | PELINOL                                                           | JISHED BY / |               |                        |            |                           |                                   |                    | $\perp$ |                |            |          |                       |               |                     |                  |                    |         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         |          |
| <u> </u>             |                                                                      |                                                                           | The Min South                  | 3 S S S                                                           |             |               |                        | DATE       |                           | T                                 | IME                |         |                | ACCE       | PTED     | BY/                   | AFFILI        | ATION               |                  |                    | DATE    |             | TIME                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | SAMPL                    | E CONDITI     | ons                     |          |
|                      |                                                                      |                                                                           |                                | tred                                                              | lnich       | 30            | HAA.                   | 3/11/2     | 0                         | Ŋυ                                | 90                 | 1/      | M              |            | M        | 1                     | H             | W                   | 03               | 3//                | War.    | <b>9</b> 70 | 91                  | The state of the s | B                       | ///                      | У             | y                       | ٦        |
|                      |                                                                      |                                                                           |                                |                                                                   |             |               |                        |            |                           |                                   |                    |         |                | <b>~</b> , | ,        |                       |               |                     | /                |                    | /       |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |               |                         | -        |
|                      |                                                                      |                                                                           |                                |                                                                   |             |               | ·                      |            |                           |                                   |                    |         |                |            |          |                       |               |                     |                  | -                  |         |             |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                          |               |                         | $\dashv$ |
|                      |                                                                      |                                                                           |                                |                                                                   | ·           |               |                        |            |                           |                                   |                    | ┼─┈     |                |            |          |                       |               | ·                   |                  | -                  |         |             |                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                          |               |                         | 4        |
| Pac                  |                                                                      |                                                                           | 1                              |                                                                   |             | SAMPLER       | R NAME A               | ND SIGNA   | TURE                      | i kaja s                          |                    |         | d v.<br>Jevete |            |          | 404-                  | ja vá         |                     |                  |                    | N. Taur | <u></u>     |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                       | _                        | pag           | ō                       | -        |
| Page 16 of           |                                                                      |                                                                           |                                |                                                                   |             | р             | RINT Nam               | e of SAMPI | LER:                      | F                                 | <u>آرُ</u>         | 1       | re             | dr         |          | h                     | 20            | )                   |                  | <u> </u>           |         |             | <u>. 13 19 - 13</u> | i S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | ) (S                     | , Sea<br>(Y⊪) | s inte<br>N)            |          |
| 6 of 1               | •                                                                    |                                                                           |                                |                                                                   |             | S             | IGNATURI               | E of SAMPI | LER:                      | ٤                                 | u'-                | 4       |                |            |          | Ť                     | DATE<br>(MM/I | Signe               | d<br>): <i>C</i> | 237                | 111/    | 20          |                     | Temp in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                       | Heceived on<br>Ice (Y/N) | Cooler (Y/N)  | Samples Intact<br>(Y/N) |          |

#### Pittsburgh Lab Sample Condition Upon Receipt MUKS Project# Client Name: UPS USPS Client Commercial Pace Other Label JMS Login Custody Seal on Cooler/Box Present: no Seals intact: Type of Ice: Wet Thermometer Used Correction Factor **Cooler Temperature Observed Temp** Temp should be above freezing to 6°C pH paper Lot# No Comments: Yes Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: 5. Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: 7. Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: Containers Intact: 11. Orthophosphate field filtered 12. 13. Hex Cr Aqueous sample field filtered 14. Organic Samples checked for dechlorination: 15. Filtered volume received for Dissolved tests All containers have been checked for preservation. 16. exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, Non-aqueous matrix All containers meet method preservation Date/time of Initial when preservation requirements. completed Lot#ofadded preservative 17. Headspace in VOA Vials ( >6mm): 18. Trip Blank Present: Trip Blank Custody Seals Present Rad Samples Screened < 0.5 mrem/hr completed: Client Notification/ Resolution: -Person-Contacted: Date/Time: Comments/ Resolution:

☐ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.



### **Quality Control Sample Performance Assessment**

#### Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Test:     | Ra-226    |
|-----------|-----------|
| Analyst:  | MK1       |
| Date:     | 3/18/2020 |
| Batch ID: | 52931     |
| Matrix    | DW.       |

| Method Blank Assessment             |         |
|-------------------------------------|---------|
| MB Sample ID                        | 1881032 |
| MB concentration:                   | -0.225  |
| M/B Counting Uncertainty:           | 0.233   |
| MB MDC:                             | 0.595   |
| MB Numerical Performance Indicator: | -1.90   |
| MB Status vs Numerical Indicator:   | N/A     |
| MB Status vs. MDC:                  | Pass    |

| Laboratory Control Sample Assessment         | LCSD (Y or N)? | N         |
|----------------------------------------------|----------------|-----------|
|                                              | LC\$52931      | LCSD52931 |
| Count Date:                                  | 4/2/2020       |           |
| Spike I.D.:                                  | 18-039         | 1         |
| Spike Concentration (pCi/mL):                | 31.432         |           |
| Volume Used (mL):                            | 0.10           | ł         |
| Aliquot Volume (L, g, F):                    |                |           |
| Target Conc. (pCi/L, g, F):                  | 4.713          |           |
| Uncertainty (Calculated):                    | 0.222          |           |
| Result (pCi/L, g, F):                        | 3.864          |           |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): | 0.765          |           |
| Numerical Performance Indicator:             | -2.09          |           |
| Percent Recovery:                            | 81.97%         |           |
| Status vs Numerical Indicator:               | N/A            |           |
| Status vs Recovery:                          | Pass           |           |
| Upper % Recovery Limits:                     | 135%           |           |
| Lower % Recovery Limits:                     | 73%            |           |

| Sample Matrix Spike Control Assessment                            | MS/MSD 1  | MS/MSD 2 |
|-------------------------------------------------------------------|-----------|----------|
| Sample Collection Date:                                           | 3/10/2020 |          |
| Sample I.D.<br>Sample MS I.D.                                     |           |          |
| Sample MSD I.D.                                                   |           |          |
| Spike I.D.:                                                       | 18-039    |          |
| MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 31.432    |          |
| Spike Volume Used in MS (mL):                                     | 0.20      |          |
| Spike Volume Used in MSD (mL):                                    |           | ·        |
| MS Aliquot (L, g, F):                                             | 0.639     |          |
| MS Target Conc.(pCi/L, g, F):                                     | 9.838     |          |
| MSD Aliquot (L, g, F):                                            |           |          |
| MSD Target Conc. (pCi/L, g, F):                                   |           |          |
| MS Spike Uncertainty (calculated):                                | 0.462     |          |
| MSD Spike Uncertainty (calculated):                               |           |          |
| Sample Result:                                                    | 0.197     |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.256     |          |
| Sample Matrix Spike Result:                                       | 9,814     |          |
| Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1,216     |          |
| Sample Matrix Spike Duplicate Result:                             |           |          |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |           |          |
| MS Numerical Performance Indicator:                               | -0.327    |          |
| MSD Numerical Performance Indicator:                              |           |          |
| MS Percent Recovery:                                              | 97.75%    |          |
| MSD Percent Recovery:                                             |           |          |
| MS Status vs Numerical Indicator:                                 | N/A       |          |
| MSD Status vs Numerical Indicator:                                |           |          |
| MS Status vs Recovery:                                            | Pass      |          |
| MSD Status vs Recovery:                                           |           |          |
| MS/MSD Upper % Recovery Limits:                                   | 136%      |          |
| MS/MSD Lower % Recovery Limits:                                   | 71%       |          |

| Duplicate Sample Assessment                                 |                |                  |
|-------------------------------------------------------------|----------------|------------------|
| Sample I.D.:                                                | 30354609001    | Enter Duplicate  |
| Duplicate Sample I.D.                                       | 30354609001DUP | sample IDs if    |
| Sample Result (pCi/L, g, F);                                | 0.397          | other than       |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 0.390          | LCS/LCSD in      |
| Sample Duplicate Result (pCi/L, g, F):                      | 0.054          | the space below. |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.282          | · ·              |
| Are sample and/or duplicate results below RL?               | See Below ##   |                  |
| Duplicate Numerical Performance Indicator:                  | 1.398          | 30354609001      |
| Duplicate RPD:                                              | 151.81%        | 30354609001DUF   |
| Duplicate Status vs Numerical Indicator:                    | N/A            |                  |
| Duplicate Status vs RPD:                                    | Foilt          |                  |
| % RPD Limit:                                                | 32%            |                  |

| Sample I.D.<br>Sample MS i.D.<br>Sample MSD i.D.                                                                                                                                                                                                                                                                                                                                                                         | М | latrix Spike/Matrix Spike Duplicate Sample Assessment                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample Matrix Spike Result:  Matrix Spike Result Counting Uncertainty (pCi/L, g, F):  Sample Matrix Spike Duplicate Result:  Matrix Spike Duplicate Result:  Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):  Duplicate Numerical Performance Indicator:  (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:  MS/ MSD Duplicate Status vs Numerical Indicator:  MS/ MSD Duplicate Status vs RPD: |   | Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCt/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCt/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: |  |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Batch must be re-prepped due to unacceptable precision

o unacceptable precision Rf of C4/2/2

Childson

Ra-226 NELAC QC

Printed: 4/2/2020 12:34 PM

## Pace Analytical www.pacetobs.com

#### **Quality Control Sample Performance Assessment**

Test: Ra-228
Analyst: VAL
Date: 3/23/2020
Worklist: 52932
Matrix: WT

Method Blank Assessment

MB Sample ID 1881033

MB concentration: 0.470

M/B 2 Sigma CSU: 0.349

MB MDC: 0.684

MB Numerical Performance Indicator: 2.64

MB Status vs Numerical Indicator: Warning

MB Status vs. MDC: Pass

| Laboratory Control Sample Assessment          | LCSD (Y or N)? | Y         |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS52932       | LCSD52932 |
| Count Date:                                   | 4/1/2020       | 4/1/2020  |
| Spike I.D.:                                   | 19-057         | 19-057    |
| Decay Corrected Spike Concentration (pCi/mL): | 34,642         | 34.642    |
| Volume Used (mL):                             | 0.10           | 0.10      |
| Aliquot Volume (L, g, F):                     | 0.804          | 0.805     |
| Target Conc. (pCi/L, g, F):                   | 4.306          | 4.304     |
| Uncertainty (Calculated):                     | 0.310          | 0.310     |
| Result (pCi/L, g, F):                         | 3.600          | 3.296     |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 0.833          | 0.797     |
| Numerical Performance Indicator:              | -1,56          | -2.31     |
| Percent Recovery:                             | 83.59%         | 76.58%    |
| Status vs Numerical Indicator:                | N/A            | N/A       |
| Status vs Recovery:                           | Pass           | Pass      |
| Upper % Recovery Limits:                      | 135%           | 135%      |
| Lower % Recovery Limits:                      | 60%            | 60%       |

| Duplicate Sample Assessment                                                                                                                                                                         |                |                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|--|
| Sample I.D.:  Duplicate Sample I.D.:  Sample Result (pCi/L, g, F):  Sample Result 2 Sigma CSU (pCi/L, g, F):  Sample Duplicate Result (pCi/L, g, F):  Are sample and/or duplicate results below RL? | 0.833<br>3.296 | Enter Duplicate<br>sample IDs if<br>other than<br>LCS/LCSD in<br>the space below. |  |
| Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:                                                                                                | 8.76%          |                                                                                   |  |
| Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:  S PPD I imit                                                                                                                     | Pass           |                                                                                   |  |

#### Analyst Must Manually Enter All Fields Highlighted in Yellow.

|   | Sample Matrix Spike Control Assessment                                                            | MS/MSD 1       | M\$/M\$D 2 |
|---|---------------------------------------------------------------------------------------------------|----------------|------------|
|   | Sample Collection Date:                                                                           | 3/10/2020      |            |
|   | Sample I.D.                                                                                       | 30354610003    |            |
|   | Sample MS I.D.                                                                                    | 30354610003MS  |            |
|   | Sample MSD I.D.                                                                                   |                |            |
|   | Spike I.D.:                                                                                       | 19-057         |            |
|   | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                              | 34,895         |            |
|   | Spike Volume Used in MS (mL):                                                                     | 0,20           |            |
|   | Spike Volume Used in MSD (mL):                                                                    |                |            |
|   | MS Aliquot (L, g, F):                                                                             | 0.809          |            |
|   | MS Target Conc.(pCi/L, g, F):                                                                     | 8.623          |            |
|   | MSD Aliquot (L, g, F):                                                                            |                |            |
|   | MSD Target Conc. (pCi/L, g, F):                                                                   |                |            |
|   | MS Spike Uncertainty (calculated):                                                                | 0.621          |            |
| l | MSD Spike Uncertainty (calculated):                                                               |                |            |
| l | Sample Result:                                                                                    | 0.695          |            |
| l | Sample Result 2 Sigma CSU (pCi/L, g, F):                                                          | 0.351          |            |
| ı | Sample Matrix Spike Result:                                                                       | 8.032<br>1.628 |            |
| ı | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                                                    | 1.020          |            |
| ı | Sample Matrix Spike Duplicate Result:<br>Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g. F); |                |            |
| ı | MS Numerical Performance Indicator:                                                               | -1.418         |            |
| l | MSD Numerical Performance Indicator.                                                              | -1.410         |            |
| ı | MS Percent Recovery:                                                                              | 85.09%         |            |
| ı | MSD Percent Recovery:                                                                             | 00.0070        |            |
| ı | MS Status vs Numerical Indicator:                                                                 | Pass           |            |
| l | MSD Status vs Numerical Indicator:                                                                |                |            |
| ۱ | MS Status vs Recovery:                                                                            | Pass           |            |
| 1 | MSD Status vs Recovery:                                                                           |                |            |
| 1 | MS/MSD Upper % Recovery Limits:                                                                   | 135%           |            |
| 1 | MS/MSD Lower % Recovery Limits:                                                                   | 60%            |            |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment    |        |
|----------------------------------------------------------|--------|
| Sample I.D.                                              | A CASA |
| Sample MS I.D.                                           | 1 1    |
| Sample MSD I.D.                                          |        |
| Sample Matrix Spike Result:                              |        |
| Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           |        |
| Sample Matrix Spike Duplicate Result:                    |        |
| Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1      |
| Duplicate Numerical Performance Indicator:               |        |
| (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: |        |
| MS/ MSD Duplicate Status vs Numerical Indicator:         |        |
| MS/ MSD Duplicate Status vs RPD:<br>% RPD Limit:         |        |

<sup>##</sup> Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228 NELAC DW2 Rrinted: 4/2/2020 8:07 AM 147-70

**ATTACHMENT 2 Statistical Analysis** 

## ATTACHMENT 2-1 March 2019 Statistical Analysis



HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

#### **TECHNICAL MEMORANDUM**

November 2, 2022 File No. 129778-049

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2019 Background Groundwater Monitoring Data

Statistical Evaluation

Completed on July 15, 2019 Lawrence Energy Center

Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)

Pursuant to Title 40 Code of Federal Regulations (40 CFR) § 257.90 (Rule), this memorandum summarizes the statistical evaluation of analytical results for the background monitoring groundwater sampling events for the Lawrence Energy Center (LEC) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds). These background monitoring groundwater sampling events were completed from March 2018 through March 2019, with laboratory results received and accepted on April 16, 2019.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

#### **Statistical Evaluation of Appendix III Constituents**

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at the coal combustion residuals (CCR) unit (40 CFR § 257.93(f) (1-4)). One statistical method used for these evaluations, the prediction limits (PL) method, was certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. November 2, 2022 Page 2

#### **STATISTICAL ANALYSIS**

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-37). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

#### **BACKGROUND DISTRIBUTIONS**

The groundwater analytical results for each sampling event from the background sample location (MW-37) were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled data set was evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2019**.

#### **RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS**

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the **March 2019** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in March 2019, SSIs above the background PL are presented in Table I.** 

Tables:

Table I – Summary of Background Groundwater Monitoring Statistical Evaluation



### **TABLES**

#### **TABLE I**

#### SUMMARY OF BACKGROUND GROUNDWATER MONITORING STATISTICAL EVALUATION

BACKGROUND SAMPLING EVENTS (MARCH 2018 - MARCH 2019)

LAWRENCE ENERGY CENTER

**INACTIVE ASH PONDS** 

|                    |                           |                        |                        |                   |          |                       |                         |                     |                    |            |                   |                                       | Interwel                                           | l Comparison |
|--------------------|---------------------------|------------------------|------------------------|-------------------|----------|-----------------------|-------------------------|---------------------|--------------------|------------|-------------------|---------------------------------------|----------------------------------------------------|--------------|
| Location Id        | Frequency of<br>Detection | Percent<br>Non-Detects | Range of<br>Non-Detect | Maximum<br>Detect | Variance | Standard<br>Deviation | Coefficient of Variance | Outlier<br>Presence | Outlier<br>Removed | Trend      | Distribution Well | March 2019<br>Concentration<br>(mg/L) | Background<br>Limits <sup>1</sup><br>(UPL)<br>mg/L | SSI          |
|                    |                           |                        |                        |                   |          |                       | CCR Appendi             | x-III: Boron, To    | tal (mg/L)         |            |                   |                                       |                                                    |              |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 2.2               | 0.01268  | 0.1126                | 0.0533                  | No                  | No                 | Stable     |                   |                                       | 2.8                                                |              |
| MW-38              | 8/8                       | 0%                     | -                      | 6.2               | 0.18     | 0.4243                | 0.07576                 | No                  | No                 | Decreasing | Normal            | 5.2                                   |                                                    | Υ            |
| MW-39              | 8/8                       | 0%                     | -                      | 5.5               | 0.2171   | 0.466                 | 0.09137                 | No                  | No                 | Stable     | Normal            | 4.6                                   |                                                    | Υ            |
| MW-40              | 8/8                       | 0%                     | -                      | 7.4               | 3.073    | 1.753                 | 0.2822                  | Yes                 | No                 | Decreasing | Non-parametric    | 5.8                                   |                                                    | N            |
| MW-K               | 8/8                       | 0%                     | -                      | 3.6               | 0.2507   | 0.5007                | 0.1837                  | No                  | No                 | Decreasing | Normal            | 2.4                                   |                                                    | N            |
| MW-L               | 8/8                       | 0%                     | -                      | 2.6               | 0.1079   | 0.3284                | 0.1622                  | No                  | No                 | Stable     | Normal            | 2.1                                   |                                                    | N            |
|                    |                           |                        |                        |                   |          |                       | CCR Appendix            | -III: Calcium, To   | otal (mg/L)        |            |                   |                                       |                                                    |              |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 143               | 8.857    | 2.976                 | 0.02157                 | No                  | No                 | Stable     |                   |                                       | 155                                                |              |
| MW-38              | 8/8                       | 0%                     | -                      | 322               | 66.57    | 8.159                 | 0.02615                 | No                  | No                 | Stable     | Normal            | 302                                   |                                                    | Υ            |
| MW-39              | 8/8                       | 0%                     | -                      | 511               | 160.3    | 12.66                 | 0.02573                 | No                  | No                 | Stable     | Normal            | 490                                   |                                                    | Υ            |
| MW-40              | 8/8                       | 0%                     | -                      | 536               | 257.1    | 16.04                 | 0.03111                 | No                  | No                 | Stable     | Normal            | 468                                   |                                                    | Υ            |
| MW-K               | 8/8                       | 0%                     | -                      | 554               | 855.4    | 29.25                 | 0.05654                 | No                  | No                 | Stable     | Normal            | 538                                   |                                                    | Υ            |
| MW-L               | 8/8                       | 0%                     | -                      | 668               | 3857     | 62.1                  | 0.1061                  | No                  | No                 | Stable     | Normal            | 612                                   |                                                    | Υ            |
|                    |                           |                        |                        |                   |          |                       | CCR Appendix            | -III: Chloride, T   | otal (mg/L)        |            |                   |                                       |                                                    |              |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 33.5              | 3.423    | 1.85                  | 0.06208                 | No                  | No                 | Stable     |                   |                                       | 40                                                 |              |
| MW-38              | 8/8                       | 0%                     | -                      | 254               | 496.8    | 22.29                 | 0.1005                  | No                  | No                 | Stable     | Normal            | 199                                   |                                                    | Υ            |
| MW-39              | 8/8                       | 0%                     | -                      | 535               | 3880     | 62.29                 | 0.1478                  | No                  | No                 | Stable     | Normal            | 399                                   |                                                    | Υ            |
| MW-40              | 8/8                       | 0%                     | -                      | 429               | 2077     | 45.57                 | 0.1247                  | No                  | No                 | Stable     | Normal            | 329                                   |                                                    | Υ            |
| MW-K               | 8/8                       | 0%                     | -                      | 825               | 11850    | 108.8                 | 0.1741                  | No                  | No                 | Stable     | Normal            | 825                                   |                                                    | Υ            |
| MW-L               | 8/8                       | 0%                     | -                      | 946               | 24340    | 156                   | 0.2055                  | No                  | No                 | Stable     | Normal            | 946                                   |                                                    | Υ            |
|                    |                           |                        | <u>'</u>               |                   |          |                       | CCR Appendix            | -III: Fluoride, To  | otal (mg/L)        |            |                   |                                       |                                                    |              |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 0.44              | 0.002457 | 0.04957               | 0.1358                  | No                  | No                 | Stable     |                   |                                       | 0.6                                                |              |
| MW-38              | 8/8                       | 0%                     | -                      | 5.5               | 0.08125  | 0.285                 | 0.05687                 | No                  | No                 | Stable     | Normal            | 4.7                                   |                                                    | Υ            |
| MW-39              | 8/8                       | 0%                     | -                      | 3.5               | 0.2364   | 0.4862                | 0.1662                  | Yes                 | No                 | Stable     | Normal            | 1.9                                   |                                                    | Υ            |
| MW-40              | 8/8                       | 0%                     | -                      | 2.1               | 0.08839  | 0.2973                | 0.1711                  | Yes                 | No                 | Stable     | Normal            | 1.2                                   |                                                    | Υ            |
| MW-K               | 8/8                       | 0%                     | -                      | 3.5               | 0.8776   | 0.9368                | 0.3307                  | No                  | No                 | Stable     | Non-parametric    | 2.2                                   |                                                    | Υ            |
| MW-L               | 8/8                       | 0%                     | -                      | 2.2               | 0.1441   | 0.3796                | 0.2011                  | Yes                 | No                 | Stable     | Non-parametric    | 1.0                                   |                                                    | Υ            |
|                    |                           |                        |                        |                   |          |                       |                         | x-III: pH (lab),    |                    |            |                   |                                       |                                                    |              |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 7.7               | 0.03071  | 0.1753                | 0.02393                 | Yes                 | No                 | Stable     |                   |                                       | 8.5                                                |              |
| MW-38              | 8/8                       | 0%                     | -                      | 7.7               | 0.005536 | 0.0744                | 0.009838                | No                  | No                 | Stable     | Normal            | 7.5                                   |                                                    | N            |
| MW-39              | 8/8                       | 0%                     | -                      | 7.5               | 0.01554  | 0.1246                | 0.0171                  | No                  | No                 | Stable     | Normal            | 7.3                                   |                                                    | N            |
| MW-40              | 8/8                       | 0%                     | -                      | 7.2               | 0.005    | 0.07071               | 0.01007                 | No                  | No                 | Stable     | Non-parametric    | 7.2                                   |                                                    | N            |
| MW-K               | 8/8                       | 0%                     | -                      | 7.7               | 0.03429  | 0.1852                | 0.02536                 | Yes                 | No                 | Stable     | Normal            | 7.3                                   |                                                    | N            |
| MW-L               | 8/8                       | 0%                     | -                      | 7.3               | 0.02554  | 0.1598                | 0.02263                 | No                  | No                 | Stable     | Normal            | 7.2                                   |                                                    | N            |
|                    | -/-                       |                        |                        |                   |          | 1.2000                |                         | د-III: Sulfate, To  |                    |            | 1                 |                                       |                                                    | ,,           |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 371               | 1282     | 35.8                  | 0.1144                  | No                  | No                 | Stable     |                   |                                       | 518                                                |              |
| MW-38              | 8/8                       | 0%                     | -                      | 1560              | 14130    | 118.9                 | 0.08747                 | No                  | No                 | Stable     | Normal            | 1350                                  | 2.20                                               | Υ            |
| MW-39              | 8/8                       | 0%                     | -                      | 2110              | 14630    | 120.9                 | 0.06446                 | No                  | No                 | Stable     | Normal            | 1810                                  |                                                    | Y            |
| MW-40              | 8/8                       | 0%                     | -                      | 2160              | 26650    | 163.2                 | 0.08884                 | No                  | No                 | Stable     | Normal            | 1730                                  |                                                    | Y            |
| MW-K               | 8/8                       | 0%                     | _                      | 2160              | 38420    | 196                   | 0.103                   | No                  | No                 | Stable     | Normal            | 2160                                  |                                                    | Y            |
| MW-L               | 8/8                       | 0%                     | _                      | 2410              | 50010    | 223.6                 | 0.1046                  | No                  | No                 | Stable     | Normal            | 2180                                  |                                                    | Y            |
| 14144 F            | 5/0                       | 370                    |                        |                   | 30010    |                       | Appendix-III: To        |                     |                    |            | Horman            | 2100                                  |                                                    | 1            |
| MW-37 (upgradient) | 8/8                       | 0%                     | -                      | 3120              | 704100   | 839.1                 | 0.8039                  | Yes                 | No No              | Stable     |                   |                                       | 3120                                               |              |
| MW-38              | 8/8                       | 0%                     | -                      | 2600              | 531900   | 729.3                 | 0.3628                  | No                  | No                 | Stable     | Normal            | 2140                                  | 3120                                               | N            |
| MW-39              | 8/8                       | 0%                     | -                      | 3770              | 40860    | 202.1                 | 0.05802                 | No                  | No                 | Stable     | Normal            | 3480                                  |                                                    | Y            |
| MW-40              | 8/8                       | 0%                     |                        | 3310              | 8713     | 93.34                 | 0.03802                 | No                  | No                 | Stable     | Normal            | 3060                                  |                                                    | N N          |
| MW-K               | 8/8                       | 0%                     | -                      | 4370              | 101000   | 317.8                 | 0.02932                 | No                  | No                 | Increasing | Normal            | 4370                                  |                                                    | Y            |
| MW-L               | 8/8                       | 0%                     | _                      | 4900              | 292900   | 541.2                 | 0.08208                 | No                  | No                 | Stable     | Normal            | 4710                                  |                                                    | Y            |
| 1V1 VV -L          | 0/0                       | U/0                    |                        | 4300              | 232300   | J41.2                 | 0.1304                  | 110                 | 110                | Stable     | INUITII           | 4/10                                  |                                                    | <u> </u>     |

#### Notes & Abbreviations:

<sup>1</sup> Based on background data collected from 03/07/2018 through 03/18/2015 CCR = coal combustion residua

mg/L = milligrams per Liter SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limit



## **ATTACHMENT 2-1 September 2019 Statistical Analysis**



HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

#### **TECHNICAL MEMORANDUM**

November 2, 2022 File No. 0204993-000

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2019 Semi-Annual Groundwater Detection Monitoring Data

Statistical Analyses Summary Lawrence Energy Center

Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)

Pursuant to Code of Federal Regulations Title 40 §257.93 and §257.94 (Rule), this memorandum summarizes the statistical summary of the analytical results for the first semi-annual detection monitoring groundwater sampling event for the Lawrence Energy Center Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive), which took place in September 2019. This semi-annual detection monitoring groundwater sampling event was completed on September 4 and 5, 2019, with laboratory results received and accepted on October 21, 2019. Due to the determination of statistically significant increases in the March 2019 statistical analyses, the unit transitioned to an assessment monitoring program; therefore, no statistical analyses were completed on this September 2019 detection monitoring sampling event data.

# **ATTACHMENT 3 Groundwater Potentiometric Maps**



#### LEGEND

MW-37 WELL NAME AND GROUNDWATER ELEVATION IN FEET 822.24 ABOVE MEAN SEA LEVEL (AMSL), SEPTEMBER 2019



MONITORING WELL



ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 1-FT INTERVAL



GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)

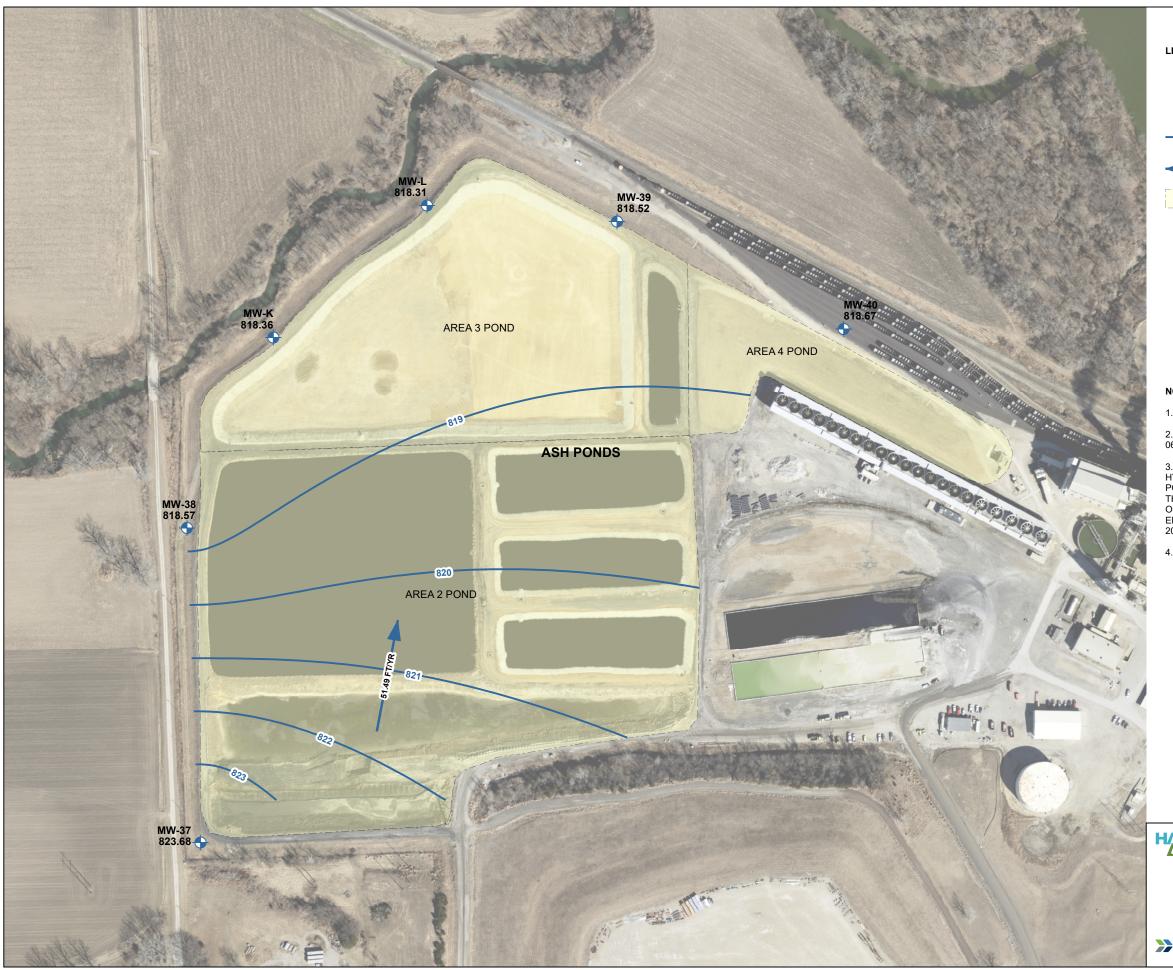


ASH PONDS (INACTIVE)

#### NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 04 05 SEPTEMBER 2019.
- 3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 04 05 SEPTEMBER 2019 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY
- 4. AERIAL IMAGERY SOURCE: ESRI, 17 APRIL 2018






EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

ASH PONDS (INACTIVE)
GROUNDWATER POTENTIOMETRIC **ELEVATION CONTOUR MAP** SEPTEMBER 4 - 5, 2019



FIGURE 2



#### LEGEND

MW-37 WELL NAME AND GROUNDWATER ELEVATION IN FEET 822.24 ABOVE MEAN SEA LEVEL (AMSL), DECEMBER 2019



MONITORING WELL



ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 1-FT INTERVAL



GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)



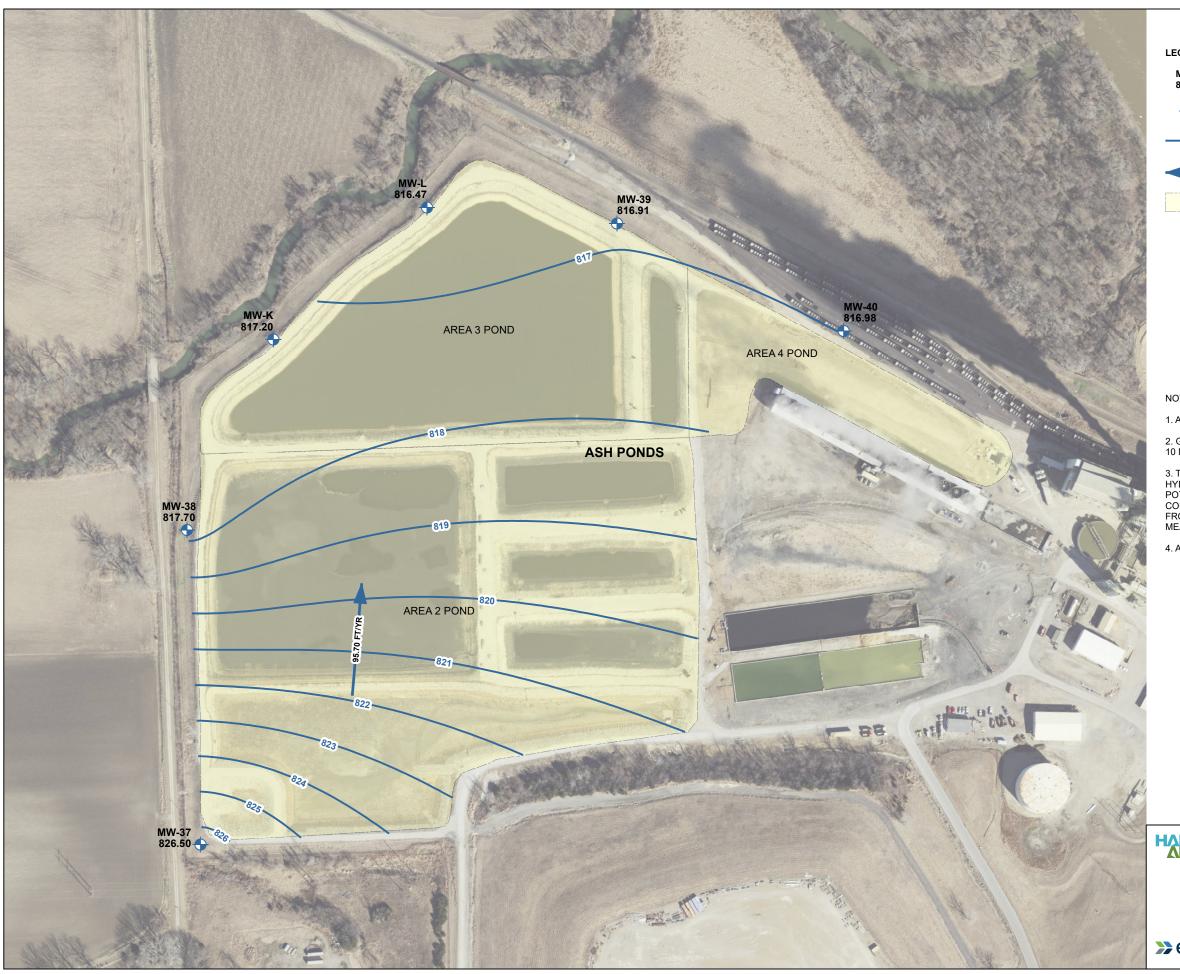
ASH PONDS (INACTIVE)

#### NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 06 DECEMBER 2019.
- 3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 06 DECEMBER 2019 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER
  ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY
- 4. AERIAL IMAGERY SOURCE: ESRI, 17 APRIL 2018








EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

ASH PONDS (INACTIVE)
GROUNDWATER POTENTIOMETRIC
ELEVATION CONTOUR MAP **DECEMBER 6, 2019** 



FIGURE 3



#### LEGEND

MW-37 WELL NAME AND GROUNDWATER ELEVATION IN FEET 822.24 ABOVE MEAN SEA LEVEL (AMSL), MARCH 2020



MONITORING WELL



ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 1-FT INTERVAL



GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)



ASH PONDS (INACTIVE)

#### NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 10 MARCH 2020.
- 3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 10 MARCH 2020 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY 2019.
- 4. AERIAL IMAGERY SOURCE: ESRI, 04 MARCH 2020





EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

ASH PONDS (INACTIVE)
GROUNDWATER POTENTIOMETRIC **ELEVATION MAP** MARCH 10, 2020



FIGURE 4