

Periodic Inflow Design Flood Control System Plan

Upper AQC Impoundment La Cygne Generating Station

Evergy Metro, Inc.

October 2021

Delivering a better world

Table of Contents

1.	Introd	luction	2
	1.1	Purpose	2
	1.2	Regulatory Requirements	2
	1.3	Brief Description of Impoundment	2
	1.3.1	Design and Construction	2
	1.3.2	Inflow from Plant Operations and Stormwater Runoff	3
	1.3.3	Outlet Structures	3
	1.4	Plan Approach	3
2.	Hydra	ulic Analysis	4
	2.1	Design Storm	4
	2.2	Rainfall Data	4
	2.3	Runoff Computations	4
3.	Hydra	ulic Analyses	5
	3.1	Process Flows	5
	3.2	Storage Capacity	5
	3.3	Discharge Analysis	5
4.	Resu	ts	6
	4.1	Inflow Analysis – §257.82 (a)(1)	6
	4.2	Outflow Analysis – §257.82 (a)(2)	7
	4.3	Inflow Design Flood – §257.82 (a)(3)	7
	4.4	Discharge – §257.82 (b)	7
5.	Concl	usions	8
6.	Limita	itions	9
7.	Certif	ication Statement10	0
8.	Refer	ences1	1

Tables

Table 1.	CCR Rule Cross Reference Table	3
Table 2.	Summary of Hydrologic and Hydraulic Analysis in Upper AQC Impoundment	6
Table 3.	Summary of Outlet Works	7

Appendices

Appendix A	Figures
Appendix B	Hydrologic and Hydraulic Support Calculations

1. Introduction

1.1 Purpose

The purpose of this Periodic Inflow Design Flood Control System Plan is to document that the requirements specified in 40 CFR §257.82 of the Coal Combustion Residual (CCR) Rule¹ have been met for the Upper Air Quality Control (AQC) Impoundment at Evergy Metro, Inc. (Evergy) La Cygne Generating Station. The Upper AQC Impoundment is an existing CCR surface impoundment as defined by 40 CFR §257.53.

1.2 Regulatory Requirements

In accordance with the CCR Rule, this plan documents how the inflow design flood control system has been designed and constructed to meet the requirements of 40 CFR §257.82 referenced below and is supported by appropriate engineering calculations. The Initial Inflow Design Flood Control System Plan was completed October 13, 2016. Periodic inflow design flood control system plans shall be prepared every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first periodic plan. This Periodic Inflow Design Flood Control System Plan has therefore been completed no later than October 13, 2021. This plan shall be amended whenever there is a change in conditions that would substantially affect the written plan in effect.

Regulatory Citation: 40 CFR §257.82 (a); Design, construct, operate, and maintain an inflow design flood control system as specified:

- (1) Inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflows design flood specified in paragraph (3);
- (2) The inflow design flood control system must adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood specified in paragraph (3);
- (3) The inflow design flood is: (i) For a high hazard potential CCR surface impoundment, the probable maximum flood; (ii) For a significant hazard potential CCR surface impoundment, the 1,000-year flood; (iii) For a low hazard potential CCR surface impoundment, the 100-year flood; or (iv) For an incised CCR surface impoundment, the 25-year flood.

Regulatory Citation: 40 CFR §257.82 (b); Discharge from the CCR unit must be handled in accordance with the surface water requirements under: §257.3 – 3.

1.3 Brief Description of Impoundment

The La Cygne Generating Station is a coal-fired power plant located near La Cygne in Linn County, Kansas. The Station is located approximately 6.25 miles east of the city of La Cygne and is bordered to the west by La Cygnes Lake. The Upper AQC Impoundment is located on plant property and has initiated closure. A site Location Map showing the area surrounding the station is in **Figure 1** of **Appendix A**.

1.3.1 Design and Construction

The original construction of the Upper AQC Impoundment was substantially completed in 1979. The Impoundment was constructed with embankments having an approximately maximum height of 50 feet and a crest elevation of 890 feet². The embankments have 2.5 horizontal to 1.0 vertical side slopes. The impoundment currently has a water surface area of approximately 17 acres at a current typical operating level of 869.5 feet and a main Upper AQC Impoundment surface area of approximately 98 acres at the zero-freeboard elevation of 889.0 feet. The unit currently has a substantial amount of material above existing water levels, and therefore a smaller water surface area, due to the closure in place process.

1.3.2 Inflow from Plant Operations and Stormwater Runoff

The Upper AQC Impoundment is primarily used as a holding basin for formerly sluiced CCR water and materials from the La Cygne Generating Station and stormwater management for the unit. The watershed for the Upper AQC Impoundment includes the access road around the perimeter of the embankment as well as the entirety of the area within the embankment.

1.3.3 Outlet Structures

The principal spillway for the Upper AQC Impoundment is located at the south side of the impoundment and consists of a 6-foot-wide by 9-foot-long by 22 feet high concrete riser fitted with stop logs. Stop logs are added or removed to manage operational water levels in the impoundment. All stop logs have been removed, lowering the operational water level to facilitate closure activities in the impoundment. The concrete riser is connected to a 30-inch corrugated metal pipe (CMP) that discharges to the Lower AQC Impoundment to the south.

The impoundment also has an auxiliary spillway. The auxiliary spillway is a 50 ft. wide riprap lined channel that extends over the crest of the embankment and along the downstream slope and discharges into a drainage swale as shown in Figure 2. The design plans show that the opening for the spillway is 3 ft. lower than the top of embankment and has a 1 ft. thick, 66 ft. wide, 4 ft. deep seepage cut off wall at the inside crest. The auxiliary spillway does not discharge into the Lower AQC Impoundment, but rather discharges into a drainage swale that slopes downward to the west and discharges into La Cygnes Lake. The auxiliary spillway is functional; however, to be conservative, the auxiliary spillway was not considered when analyzing the outlet from the Upper AQC Impoundment.

1.4 Plan Approach

Analyses and calculations completed for the hydrologic and hydraulic assessments of the Upper AQC Impoundment are described in this plan and included in **Appendix B**. Data and analyses results are based on information shown on design drawings, topographic surveys, information about operational and maintenance procedures provided by Evergy, and field observations by AECOM. The analysis approach and results of the hydrologic and hydraulic analyses are presented in the following sections. The results of this analysis will be used by AECOM to confirm that the Upper AQC Impoundment meets the hydrologic and hydraulic capacity requirements of the rules referenced above for CCR surface impoundments. **Table 1** cross references the Plan sections to the applicable CCR Rule requirements.

Plan Section	Title	CCR Rule Reference
4.1	Inflow Analysis	§257.82 (a)(1)
4.2	Outflow Analysis	§257.82 (a)(2)
4.3	Inflow Design Flood	§257.82 (a)(3)
4.4	Discharge handled in accordance with §257.3 - 3	§257.82 (b)

Table 1. CCR Rule Cross Reference Table

2. Hydraulic Analysis

2.1 Design Storm

The La Cygne Upper AQC Impoundment has been categorized by others¹³ as a "Low Hazard Potential CCR Impoundment", which indicates that the inflow design flood is the 100-year return frequency design storm event.

2.2 Rainfall Data

The rainfall information used in the analysis was based on the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 8, Version 2³ which provides rainfall data for storm events with average recurrence intervals ranging from 1 to 1,000 years and durations ranging from 5 minutes to 60 days. The design storm rainfall depth, obtained from the NOAA website, is 8.6 inches for the 24-hour, 100-year storm The Soil Conservation Service (SCS) Type II rainfall distribution used by AECOM is appropriate to use for storms up to the 1,000-year flood at the project site.

2.3 Runoff Computations

The watershed areas for the Upper AQC Impoundment were determined using a computer-aided design (CAD) analysis of the AECOM design plans for Ponds A and B and the existing ground contours provided by Evergy⁴⁻¹⁰. Design plans were used for Ponds A and B because they have been constructed but as built drawings had not been created at the time this analysis was completed. The existing ground contours were compiled from multiple surveys by third parties dated 2001 through 2021. Survey information can be found in **References**. The total watershed area to the impoundment is approximately 332.4 acres and is subdivided into nine sub-watersheds. Sub-dividing the Upper AQC Impoundment into sub-watersheds more accurately models the upstream storage capacity in the Impoundment and provides a more accurate peak inflow to the main Upper AQC storage area. See **Figure 2** in **Appendix A** for the Watershed Map.

Runoff was calculated using the SCS Curve Number Method, where curve numbers (CN) were assigned to each sub-catchment based on the type of land cover and soil type present. Using the USDA Natural Resources Conservation Service (NRCS) Web Soil Survey¹¹, the soil type of the site was determined to be almost exclusively hydrologic soil group D. CN values for the land cover were selected from the SCS NRCS Technical Release-55 (TR-55) publication¹². Gravel roads and Water Surface land covers that are located on site were determined to have a CN value of 89 and 98, respectively. A majority of land cover for the Upper AQC Impoundment watershed consists of CCR. Based on past project experience, a curve number of 85 was selected for the CCR area. A composite CN was calculated for each sub-catchment area by summing the products of each CN multiplied by its percentage of the total area. Calculations for the weighted runoff curve numbers for each sub-watershed were performed in HydroCAD.

The time of concentration is commonly defined as the time required for runoff to travel from the most hydrologically distant point to the point of collection. Calculations for the time of concentration for each sub-watershed were performed in HydroCAD.

Stormwater runoff from the 100-year event into the southernmost watershed (Node P-I) of the Upper AQC Impoundment has a peak runoff inflow of 576.2 cfs and total runoff inflow volume of 159.9 acre-feet. Stormwater runoff from the 100-year event into the Pond A (Node P-A) of the Upper AQC Impoundment has a peak runoff inflow of 211.6 cfs and total runoff inflow volume of 14.7 acre-feet. Stormwater runoff from the 100-year event into the Pond B (Node P-B) of the Upper AQC Impoundment has a peak runoff inflow volume of 219.0 cfs and total runoff inflow volume of 15.1 acre-feet. Ponds A and B both have finished cover and their discharges are non-contact water.

3. Hydraulic Analyses

3.1 **Process Flows**

CCR sluicing operations to the Upper AQC Impoundment have been discontinued. Thus, there are no inflows to the impoundment other than precipitation.

3.2 Storage Capacity

The storage volumes for the Upper AQC Impoundment were determined using a CAD analysis of the existing ground contours⁴⁻¹⁰. The calculated volume of the Upper AQC Impoundment is approximately 729 acre-feet of available storage measured from the current typical operating pool elevation of 869.5 feet to the zero-freeboard elevation of 889.0 feet.

3.3 Discharge Analysis

A hydraulic model was created in HydroCAD to assess the capacity of the impoundment to store and convey the stormwater flows. HydroCAD has the capability to evaluate multiple impoundments within a network and to respond to variable tailwater, pumping rates, and reversing flows. HydroCAD routing calculations reevaluate the impoundment's discharge capability at each time increment, making the program an efficient and dynamic tool for this evaluation.

The analyzed scenario assumes the starting water surface elevation of Region 6 of the Upper AQC Impoundment is 869.5 feet, which is the water surface elevation at the Principal Spillway intake weirs. The upstream regions are assumed to have no ponded water. The current conditions are that the stop logs in the principal outlet structure have been removed, making the invert elevation 869.5 feet assuming there is zero discharge out of the system at the start of the simulation. The IDF inflow is stored in the Upper AQC Impoundment and then discharged through the primary spillway into a concrete lined ditch that discharges into La Cygnes Lake.

4. Results

The hydrologic and hydraulic conditions of the Upper AQC Impoundment were modeled with the peak discharge of the 100-year storm event. The hydrologic and hydraulic analyses and calculations for the Upper AQC Impoundment are summarized below and included in **Appendix B**.

4.1 Inflow Analysis – §257.82 (a)(1)

Adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood.

Background and Assessment

Using the HydroCAD model, the total inflow was stored and routed through the various swales, culverts, and dike openings of the Upper AQC Impoundment to determine the peak water surface elevations.

Table 2 summarizes the water surface elevations of the Upper AQC Impoundment prior to and after the inflow design flood. It is important to note that Pond E overtops into Pond G and not outside of the embankment. Pond G discharges into Pond I and not outside of the embankment. No external overtopping of any exterior embankment is predicted in the model.

Subcatchment	Beginning WSE* (feet)	Peak WSE (feet)	Min. Crest Elevation (feet)	Freeboard Above Peak WSE (feet)
Pond A 100-Year, 24-Hour Storm	888.0	893.2	895.8	2.6
Pond B 100-Year, 24-Hour Storm	887.5	892.9	895.8	2.9
Pond C 100-Year, 24-Hour Storm	887.8	889.9	890.8	0.9
Pond D 100-Year, 24-Hour Storm	885.3	887.7	890.4	2.7
Pond E 100-Year, 24-Hour Storm	883.1	884.6	884.1	-0.5 ¹
Pond F 100-Year, 24-Hour Storm	883.0	884.2	889.1	4.9
Pond G 100-Year, 24-Hour Storm	881.4	883.4	889.5	6.1 ¹
Pond H 100-Year, 24-Hour Storm	888.3	889.1	890.6	1.5
Pond I (Principal Spillway) 100-Year, 24-Hour Storm	869.5	878.6	889.6	11.0

Table 2. Summary of Hydrologic and Hydraulic Analysis in Upper AQC Impoundment

1 - Pond E overtops into Pond G, which are both inside the embankment. Pond G discharges into Pond I and not outside of the embankment. No external overtopping of any exterior embankment is predicted in the model.

Conclusion and Recommendation

As there is adequate storage within the Upper AQC Impoundment to manage the inflow design flood, there is no anticipated overtopping of the embankments, which meets the requirements in §257.82 (a)(1).

4.2 Outflow Analysis – §257.82 (a)(2)

Adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood.

Background and Assessment

Using the HydroCAD model, the total inflow due to rainfall runoff in contributing drainage areas was stored and routed to the outlet riser at the south end of the Upper AQC Impoundment to determine the peak water surface elevations at Pond I, which is the Principal Spillway. The same method was used for Ponds A and B, which have received final cover and discharge non-contact water. The results are summarized in **Table 3**.

Table 3. Summary of Outlet Works

Outlet	Storm Event	Invert Elevation (feet)	Peak Flowrate (cfs)	Velocity at Peak Flowrate (fps)
Pond I (Principal Spillway)	100-Year, 24-Hour	869.5	40.9	8.3
Pond A	100-Year, 24-Hour	888.0	10.3	8.1
Pond B	100-Year, 24-Hour	887.5	10.6	8.3

Conclusion and Recommendation

As the Upper AQC Impoundment outlet manages the discharge of the inflow design flood without the peak water surface elevation overtopping the embankment, the impoundment meets the requirements in §257.82 (a)(2).

4.3 Inflow Design Flood – §257.82 (a)(3)

Required Inflow design flood for Low Hazard Surface Impoundments.

Background and Assessment

The calculations for the inflow design flood are based on the hazard potential of the impoundment. The different classifications of the impoundment hazard potential are high, significant, and low.

Conclusion and Recommendation

As the impoundment hazard potential category is Low¹³, the 100-year design storm was utilized in the analysis, which meets the requirements in §257.82 (a)(3).

4.4 Discharge – §257.82 (b)

Discharge from the CCR unit handled in accordance with the surface water requirements under: §257.3 – 3.

Background and Assessment

The discharge from the Upper AQC Impoundment outlet riser enters a discharge pipe that leads to the Lower AQC Impoundment. The discharge must meet the requirements of the NPDES under Section 402 of the Clean Water Act to meet the above requirement of the CCR rule.

Conclusion and Recommendation

Region 1 (Ponds A and B) currently discharges non-contact water. Regions 2 through 6 (Ponds C through I) continue to discharge from the Upper AQC Impoundment and flow to a concrete lined channel that drains to La Cygnes Lake. Therefore, the facility does not cause a discharge of pollutants into waters of the United States that is in violation of the requirements of the NPDES under Section 402 of the Clean Water Act, and thereby meets the requirements in §257.82 (b).

5. Conclusions

The hazard classification assessments conducted by others concluded that the Hazard Potential category of the impoundment is Low¹³. The inflow design flood control system of the Upper AQC Impoundment adequately manages flow into the CCR unit during and following the peak discharge of the 100-year, 24-hour frequency storm event inflow design flood. The inflow design flood control system of the Upper AQC Impoundment adequately manages flow from the CCR unit to collect and control the peak discharge resulting from the 100-year, 24-hour frequency storm event inflow design flood. Discharge from the Upper AQC Impoundment is handled in accordance with the surface water requirements of §257.3 – 3 during the 100-year, 24-hour flood event. Therefore, the Upper AQC Impoundment meets the requirements for certification.

The contents of this plan, specifically **Sections 1** through **5**, represent the Periodic Inflow Design Flood Control System Plan for this unit.

6. Limitations

Background information, design basis, and other data have been furnished to AECOM by Evergy, which AECOM has used in preparing this plan. AECOM has relied on this information as furnished and is not responsible for the accuracy of this information. Our recommendations are based on available information from previous and current investigations. These recommendations may be updated as future investigations are performed.

The conclusions presented in this plan are intended only for the purpose, site location, and project indicated. The recommendations presented in this plan should not be used for other projects or purposes. Conclusions or recommendations made from these data by others are their responsibility. The conclusions and recommendations are based on AECOM's understanding of current plant operations, maintenance, stormwater handling, and ash handling procedures at the station, as provided by Evergy. Changes in any of these operations or procedures may invalidate the findings in this plan until AECOM has had the opportunity to review the findings and revise the plan if necessary.

This hydrologic and hydraulic analysis was performed in accordance with the standard of care commonly used as state-of-practice in our profession. Specifically, our services have been performed in accordance with accepted principles and practices of the hydrologic and hydraulic engineering profession. The conclusions presented in this plan are professional opinions based on the indicated project criteria and data available at the time this plan was prepared. Our services were provided in a manner consistent with the level of care and skill ordinarily exercised by other professional consultants under similar circumstances. No other representation is intended.

7. Certification Statement

CCR Unit: Evergy La Cygne Generating Station, Upper AQC Impoundment

I, Joslyn Townsend, being a Registered Professional Engineer in good standing in the State of Kansas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the Periodic Inflow Design Flood Control System Plan dated October 8, 2021, which includes all pages in Sections 1 through 5, meets the requirements of 40 CFR § 257.82.

Joslyn Townsend

Printed Name

October 8, 2021

Date

AECOM 2380 McGee Street, Suite 200 Kansas City, Missouri 64108 1-816-561-4443

8. References

- U.S. Environmental Protection Agency, Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, 40 CFR §257.82 Federal Register 80, Subpart D, April 17, 2015.
- 2. AECOM, History of Construction Report, Upper AQC Impoundment, La Cygne Generating Station, Kansas City Power & Light Company, dated October 2016.
- 3. National Oceanic and Atmospheric Administration, NOAAAtlas 14 Point Precipitation Frequency Estimates, Volume 8, Version 2, <u>https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=il</u>, dated 2021.
- 4. Western Air Mapping, Topographic Survey Plans for the La Cygne Generating Station, dated 2001.
- 5. Tukuh Technologies, LLC, Topographic Survey Plans for the La Cygne Generating Station, dated 2017.
- 6. Tukuh Technologies, LLC, Topographic Survey Plans for the La Cygne Generating Station, dated 2018.
- 7. AECOM, Alternative Cover Design Test Site Upper AQC Impoundment, La Cygne Generating Station, Kansas City Power & Light Company, dated September 2019.
- 8. BHC RHODES, Topographic Survey Plans for the La Cygne Generating Station, dated 2020.
- 9. BHC RHODES, Topographic Survey Plans for the La Cygne Generating Station, dated 2021.
- 10. No Author, Bathymetric Survey Plans for the La Cygne Generating Station, undated.
- 11. USDA Natural Resources Conservation Service, Web Soil Survey, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm, dated 2021.
- 12. <u>USDA</u> Natural Resources Conservation Service, Technical Release 55, dated June 1986.
- 13. SCS Engineers, Periodic Hazard Potential Classification Assessment Report, Upper AQC Impoundment, Evergy Metro, Inc., La Cygne Generating Station, dated October 2021.

Appendix A Figures

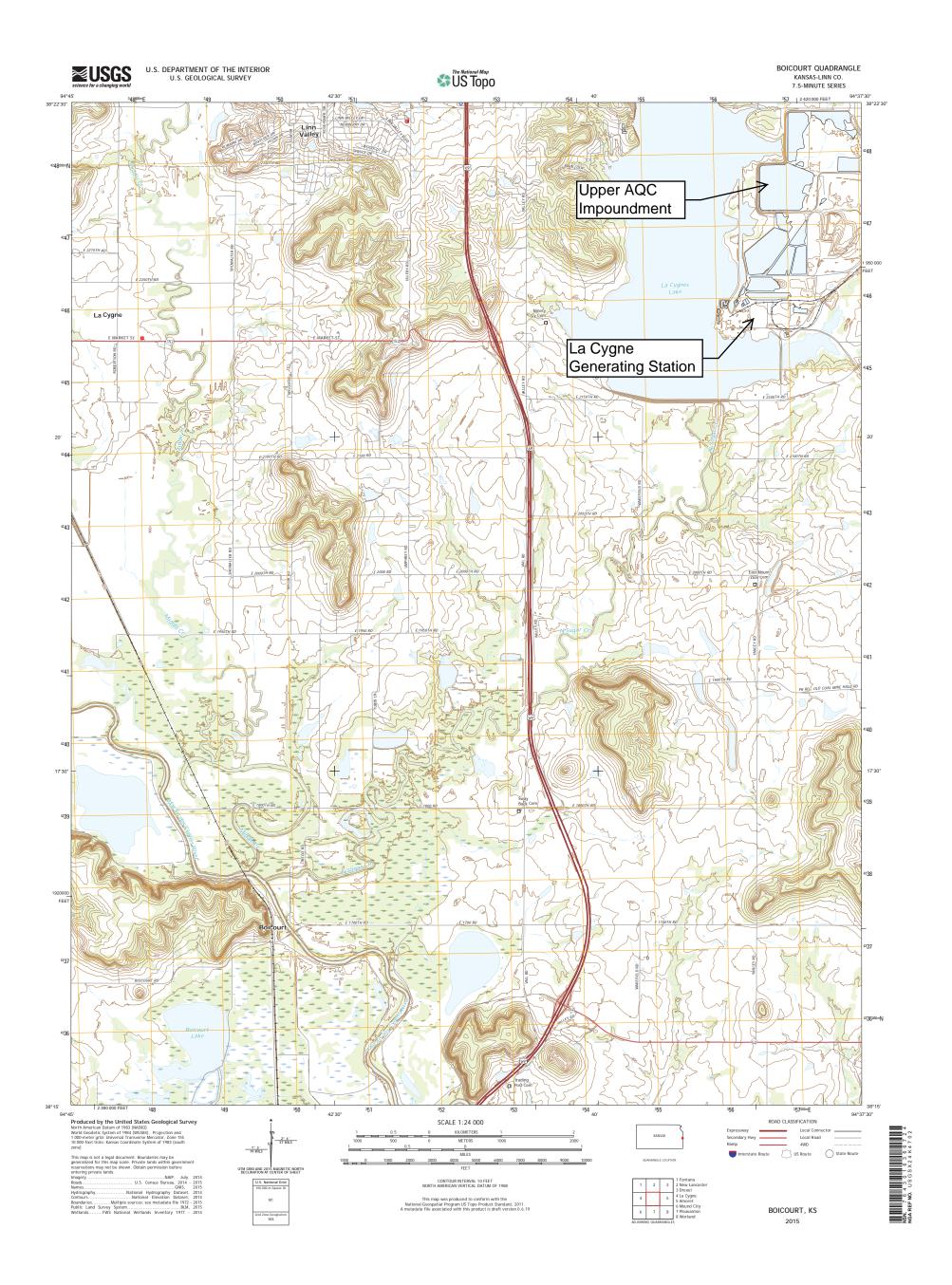


Figure 1 - Location Map

	Existii
	Ι
	Мар
	Area
	Evergy La Cygne Phase 4\Plan Sheets\Drainage Area Map
(mik)	Sheets
E	Plan
05	4
6:51.05 pm	Phase
, 2021	ygne
13,	0
_	Ľ
ptember 13,	, Evergy

		REV. NO.	ΒY	DATE	REVISIONS DESCRIPTION
drawn by: TMS	DESIGNED BY: -				
CHECKED BY: JCA	APPROVED BY: -				
DATE: AUGUST 31, 2021					

Appendix B Hydrologic and Hydraulic Support Calculations

- **B.1 NOAA Rainfall Depths**
- **B.2 NRCS Web Soil Survey Map**
- **B.3 Hydrologic Parameter Calculations**
- **B.4 Existing Surface Contours**

B.1 NOAA Rainfall Depths

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: La Cygne, Kansas, USA* Latitude: 38.3556°, Longitude: -94.6385° Elevation: 859.74 ft** * source: ESRI Maps ** source: USGS

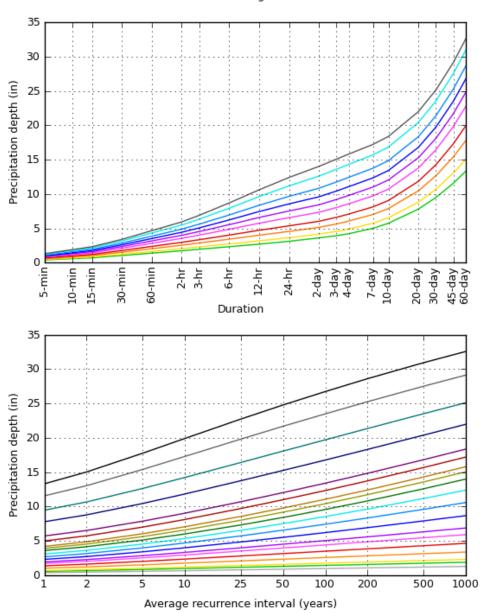
POINT PRECIPITATION FREQUENCY ESTIMATES

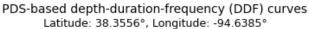
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

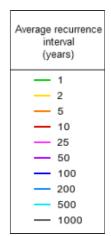
NOAA, National Weather Service, Silver Spring, Maryland

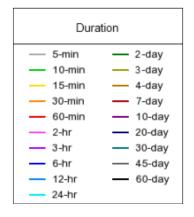
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


		Average recurrence interval (years)								
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.398 (0.315-0.507)	0.468 (0.371-0.596)	0.581 (0.459-0.742)	0.674 (0.530-0.863)	0.799 (0.609-1.04)	0.895 (0.669-1.18)	0.989 (0.718-1.33)	1.08 (0.759-1.48)	1.21 (0.817-1.68)	1.30 (0.861-1.84)
10-min	0.582 (0.462-0.742)	0.685 (0.543-0.873)	0.851 (0.672-1.09)	0.986 (0.775-1.26)	1.17 (0.891-1.53)	1.31 (0.979-1.73)	1.45 (1.05-1.94)	1.59 (1.11-2.17)	1.77 (1.20-2.46)	1.90 (1.26-2.69)
15-min	0.710 (0.563-0.905)	0.835 (0.662-1.07)	1.04 (0.819-1.33)	1.20 (0.946-1.54)	1.43 (1.09-1.86)	1.60 (1.19-2.11)	1.77 (1.28-2.37)	1.94 (1.36-2.65)	2.15 (1.46-3.00)	2.32 (1.54-3.28)
30-min	1.04 (0.825-1.33)	1.23 (0.972-1.56)	1.53 (1.21-1.95)	1.77 (1.39-2.27)	2.10 (1.60-2.74)	2.35 (1.76-3.10)	2.60 (1.88-3.48)	2.84 (1.99-3.88)	3.15 (2.13-4.39)	3.39 (2.25-4.78)
60-min	1.39 (1.10-1.77)	1.63 (1.30-2.08)	2.04 (1.61-2.60)	2.37 (1.86-3.03)	2.82 (2.15-3.69)	3.17 (2.37-4.18)	3.51 (2.55-4.71)	3.86 (2.70-5.28)	4.31 (2.92-6.02)	4.66 (3.09-6.58)
2-hr	1.73 (1.39-2.19)	2.04 (1.63-2.58)	2.54 (2.03-3.22)	2.96 (2.35-3.76)	3.54 (2.72-4.59)	3.98 (3.00-5.21)	4.43 (3.24-5.90)	4.88 (3.45-6.62)	5.48 (3.74-7.58)	5.93 (3.96-8.31)
3-hr	1.95 (1.57-2.45)	2.29 (1.84-2.88)	2.86 (2.29-3.60)	3.34 (2.66-4.22)	4.01 (3.10-5.18)	4.53 (3.44-5.91)	5.06 (3.73-6.72)	5.60 (3.98-7.58)	6.33 (4.35-8.74)	6.89 (4.62-9.62)
6-hr	2.32 (1.88-2.89)	2.73 (2.21-3.40)	3.42 (2.77-4.26)	4.01 (3.23-5.02)	4.86 (3.80-6.24)	5.53 (4.23-7.16)	6.22 (4.62-8.20)	6.94 (4.97-9.33)	7.92 (5.49-10.9)	8.69 (5.87-12.0)
12-hr	2.69 (2.20-3.31)	3.17 (2.60-3.91)	4.00 (3.26-4.93)	4.71 (3.82-5.83)	5.74 (4.54-7.33)	6.57 (5.08-8.46)	7.44 (5.58-9.74)	8.35 (6.04-11.2)	9.61 (6.71-13.1)	10.6 (7.22-14.6)
24-hr	3.11 (2.57-3.79)	3.64 (3.00-4.43)	4.55 (3.74-5.56)	5.36 (4.39-6.57)	6.55 (5.24-8.30)	7.52 (5.88-9.61)	8.55 (6.48-11.1)	9.65 (7.04-12.8)	11.2 (7.87-15.1)	12.4 (8.50-16.9)
2-day	3.61 (3.01-4.35)	4.16 (3.47-5.03)	5.14 (4.27-6.22)	6.02 (4.97-7.31)	7.33 (5.93-9.23)	8.42 (6.65-10.7)	9.58 (7.33-12.4)	10.8 (7.98-14.3)	12.6 (8.95-16.9)	14.0 (9.68-18.9)
3-day	3.93 (3.29-4.71)	4.55 (3.81-5.46)	5.64 (4.70-6.78)	6.60 (5.48-7.96)	8.02 (6.51-10.0)	9.19 (7.28-11.6)	10.4 (8.00-13.4)	11.7 (8.68-15.4)	13.6 (9.69-18.2)	15.1 (10.5-20.3)
4-day	4.21 (3.54-5.03)	4.89 (4.11-5.84)	6.05 (5.07-7.25)	7.08 (5.90-8.50)	8.57 (6.97-10.6)	9.79 (7.78-12.3)	11.1 (8.52-14.1)	12.4 (9.21-16.2)	14.3 (10.2-19.0)	15.8 (11.0-21.2)
7-day	5.00 (4.24-5.93)	5.75 (4.87-6.82)	7.02 (5.93-8.34)	8.13 (6.83-9.69)	9.72 (7.95-11.9)	11.0 (8.80-13.7)	12.3 (9.56-15.6)	13.7 (10.2-17.8)	15.7 (11.3-20.7)	17.2 (12.1-22.9)
10-day	5.73 (4.88-6.76)	6.53 (5.56-7.70)	7.88 (6.69-9.31)	9.04 (7.63-10.7)	10.7 (8.79-13.1)	12.0 (9.66-14.8)	13.4 (10.4-16.9)	14.9 (11.1-19.1)	16.8 (12.1-22.1)	18.4 (12.9-24.4)
20-day	7.80 (6.71-9.10)	8.80 (7.56-10.3)	10.5 (8.96-12.2)	11.8 (10.1-13.9)	13.8 (11.4-16.6)	15.3 (12.3-18.6)	16.8 (13.1-20.8)	18.3 (13.8-23.3)	20.4 (14.8-26.5)	22.0 (15.6-28.9)
30-day	9.48 (8.20-11.0)	10.7 (9.23-12.4)	12.6 (10.9-14.7)	14.2 (12.2-16.6)	16.4 (13.6-19.6)	18.1 (14.7-21.8)	19.7 (15.5-24.3)	21.4 (16.2-26.9)	23.5 (17.1-30.3)	25.1 (17.9-32.9)
45-day	11.6 (10.1-13.3)	13.0 (11.3-15.0)	15.4 (13.3-17.8)	17.3 (14.9-20.1)	19.8 (16.5-23.4)	21.7 (17.7-26.0)	23.5 (18.5-28.7)	25.3 (19.2-31.6)	27.5 (20.1-35.2)	29.1 (20.8-38.0)
60-day	13.3 (11.6-15.3)	15.0 (13.1-17.3)	17.8 (15.5-20.4)	19.9 (17.2-23.0)	22.7 (19.0-26.7)	24.8 (20.3-29.5)	26.7 (21.2-32.5)	28.6 (21.8-35.6)	30.9 (22.7-39.4)	32.6 (23.4-42.3)

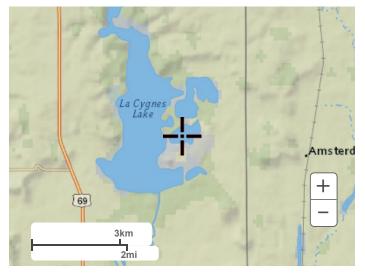

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

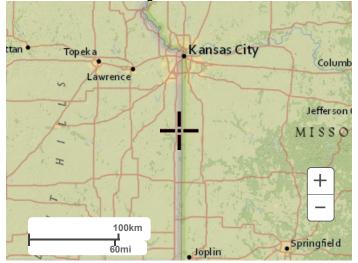

Back to Top

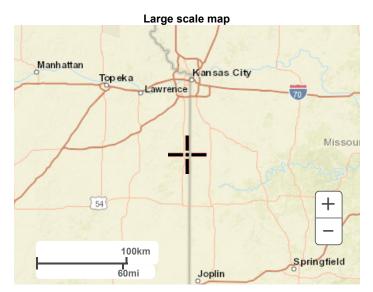
PF graphical

NOAA Atlas 14, Volume 8, Version 2

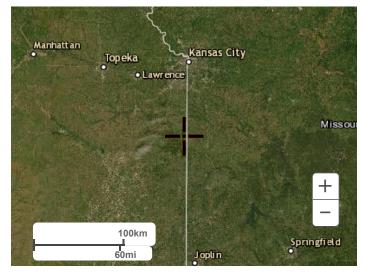

Created (GMT): Fri Sep 3 20:11:31 2021

Back to Top


Maps & aerials

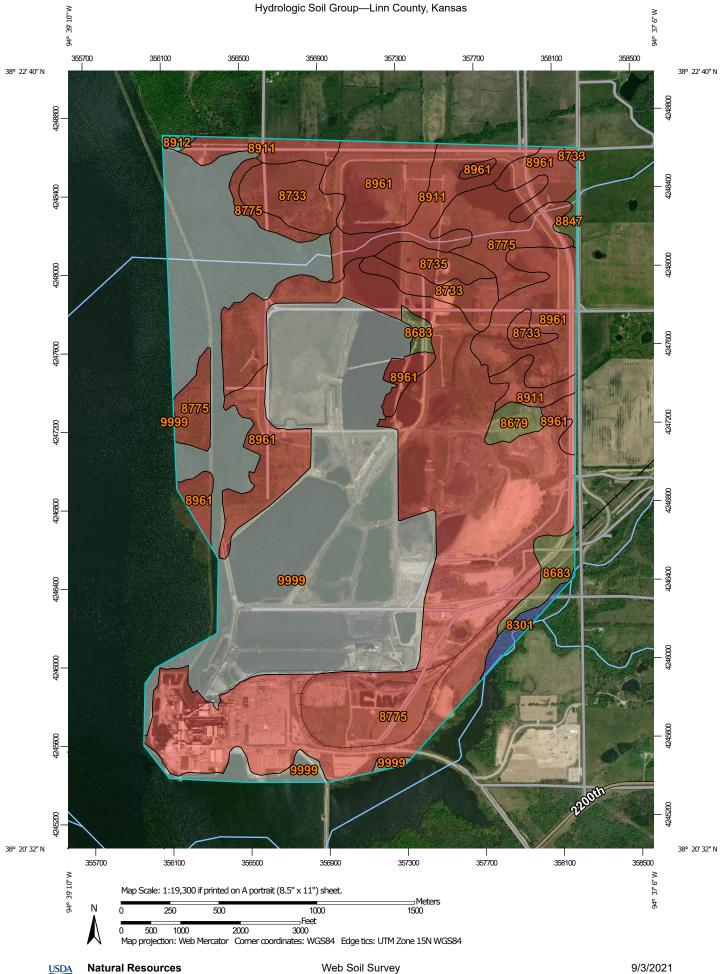

Small scale terrain

Precipitation Frequency Data Server


Large scale terrain

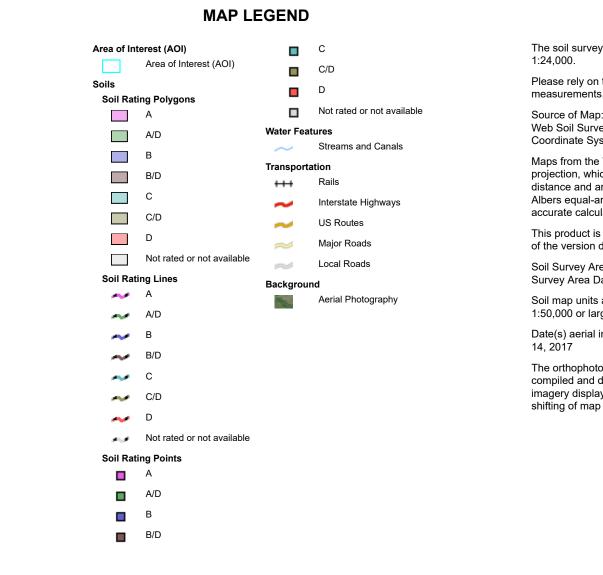
Large scale aerial

Precipitation Frequency Data Server



Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>


Disclaimer

B.2 NRCS Web Soil Survey Map

National Cooperative Soil Survey

Conservation Service

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Linn County, Kansas Survey Area Data: Version 20, Jun 10, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 20, 2014—Jun 14, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8301	Verdigris silt loam, 0 to 1 percent slopes, frequently flooded	В	9.0	0.6%
8679	Dennis silt loam, 1 to 3 percent slopes	C/D	11.0	0.7%
8683	Dennis silt loam, 3 to 7 percent slopes	C/D	22.4	1.5%
8733	Eram silty clay loam, 1 to 3 percent slopes	D	63.9	4.2%
8735	Eram silty clay loam, 3 to 7 percent slopes	D	18.2	1.2%
8775	Kenoma silt loam, 1 to 3 percent slopes	D	548.8	35.8%
8847	Okemah silt loam, 0 to 3 percent slopes	C/D	3.9	0.3%
8911	Summit silty clay loam, 1 to 3 percent slopes	D	81.4	5.3%
8912	Summit silty clay loam, 3 to 7 percent slopes	С	2.5	0.2%
8961	Woodson silt loam, 0 to 1 percent slopes	D	203.7	13.3%
9999	Water		566.3	37.0%
Totals for Area of Inter	rest	1	1,531.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

B.3 Hydrologic Parameter Calculations

I, Joslyn Townsend, being a Registered Professional Engineer in good standing in the State of Kansas, do hereby certify that the following calculations, which include all pages in Appendix B.3, were made to satisfy the requirements specified in 40 CFR §257.82 and were prepared by me or under my direct personal supervision.

Joslyn Townsend

Printed Name

October 8, 2021

Date

AECOM 2380 McGee Street, Suite 200 Kansas City, Missouri 64108 1-816-561-4443

TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing (selected events)
- 3 Area Listing (all nodes)
- 4 Soil Listing (all nodes)
- 5 Ground Covers (all nodes)
- 6 Pipe Listing (all nodes)

100-Year Event

- 7 Node Listing
- 8 Pond P-A: West 15.3" Culvert
- 11 Pond P-B: East 15.3" Culvert
- 14 Pond P-C: Region 2 CCR
- 16 Pond P-D: Region 3/4 CCR
- 18 Pond P-E: Region 4 South
- 20 Pond P-F: Region 5 CCR
- 23 Pond P-G: Region 6b
- 26 Pond P-H: Region 6c
- 29 Pond P-I: Principal Spillway

Printed 10/2/2021 Page 2

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	100-Year	Type II 24-hr		Default	24.00	1	8.55	2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
20.720	98	Artificial Turf (S-A)
281.940	85	CCR (S-C1, S-C2, S-C3, S-D, S-E, S-F, S-G, S-H, S-I)
8.760	91	Gravel roads, HSG D (S-A, S-B, S-C1, S-C2, S-C3, S-D, S-F, S-H, S-I)
20.930	98	Soil Cover (S-B)
332.350	87	TOTAL AREA

Printed 10/2/2021 Page 4

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
8.760	HSG D	S-A, S-B, S-C1, S-C2, S-C3, S-D, S-F, S-H, S-I
323.590	Other	S-A, S-B, S-C1, S-C2, S-C3, S-D, S-E, S-F, S-G, S-H, S-I
332.350		TOTAL AREA

8-30-2021 La Cygne IDF Model Existing Conditions 2021
Prepared by AECOM
HydroCAD® 10.10-4a s/n 01723 © 2020 HydroCAD Software Solutions LLC

Printed 10/2/2021 Page 5

HSG-C HSG-D Other Ground Subcatchment HSG-A HSG-B Total (acres) (acres) (acres) (acres) (acres) (acres) Cover Numbers 0.000 0.000 S-A 0.000 0.000 20.720 20.720 Artificial Turf 0.000 0.000 0.000 0.000 S-C1, S-C2, S-C3, 281.940 281.940 CCR S-D, S-E, S-F, S-G, S-H, S-I 0.000 S-A, S-B, S-C1, 0.000 0.000 8.760 0.000 8.760 Gravel roads S-C2, S-C3, S-D, S-F, S-H, S-I 0.000 0.000 0.000 0.000 20.930 20.930 Soil Cover S-B 0.000 0.000 0.000 8.760 323.590 332.350 **TOTAL AREA**

Ground Covers (all nodes)

8-30-2021 La Cygne IDF Model Existing Conditions 2021

Prepared by AECOM	
HydroCAD® 10.10-4a s/n 01723	© 2020 HydroCAD Software Solutions LLC

Printed 10/2/2021 Page 6

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	P-A	888.00	887.08	92.0	0.0100	0.013	15.3	0.0	0.0
2	P-B	887.50	886.54	96.0	0.0100	0.013	15.3	0.0	0.0
3	P-H	888.30	887.40	60.0	0.0150	0.014	18.0	0.0	0.0
4	P-H	888.40	887.10	60.0	0.0217	0.014	18.0	0.0	0.0
5	P-I	865.46	864.60	268.0	0.0032	0.025	30.0	0.0	0.0

La Cygne IDF 2 8-30-2021 La Cygne IDF Model Existing Conditions 20 <i>Type II 24-hr</i> 100-Year Rainfall=8 Prepared by AECOM HydroCAD® 10.10-4a s/n 01723 © 2020 HydroCAD Software Solutions LLC Page 2020 HydroCAD Software Solutions LLC	.55″
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	-
Pond P-A: West 15.3" Culvert Peak Elev=893.18' Storage=7.369 af Inflow=211.58 cfs 14.65 Primary=10.34 cfs 14.653 af Secondary=0.00 cfs 0.000 af Tertiary=0.00 cfs 0.000 af Outflow=10.34 cfs 14.653	
Pond P-B: East 15.3" Culvert Peak Elev=892.92' Storage=7.398 af Inflow=218.97 cfs 15.08 Primary=10.61 cfs 15.082 af Secondary=0.00 cfs 0.000 af Tertiary=0.00 cfs 0.000 af Outflow=10.61 cfs 15.08	
Pond P-C: Region 2 - CCR Peak Elev=889.89' Storage=8.072 af Inflow=537.35 cfs 30.99 Primary=341.47 cfs 30.992 af Secondary=0.00 cfs 0.000 af Outflow=341.47 cfs 30.99	
Pond P-D: Region 3/4 CCR Peak Elev=887.70' Storage=17.328 af Inflow=813.83 cfs 69.84 Primary=425.50 cfs 69.826 af Secondary=0.00 cfs 0.000 af Outflow=425.50 cfs 69.82	

 Pond P-E: Region 4 South
 Peak Elev=884.62' Storage=0.163 af
 Inflow=438.21 cfs
 23.090 af

 Primary=397.01 cfs
 22.623 af
 Secondary=40.10 cfs
 0.467 af
 Outflow=437.12 cfs
 23.090 af

 Pond P-F: Region 5 CCR
 Peak Elev=884.19' Storage=2.402 af Inflow=760.16 cfs 108.481 af

 mary=76.82 cfs 10.995 af Secondary=425.32 cfs 60.875 af Tertiary=255.77 cfs 36.608 af Outflow=757.90 cfs 108.478 af

Pond P-G: Region 6b Peak Elev=883.44' Storage=209.730 af Inflow=786.92 cfs 104.352 af Primary=277.62 cfs 103.696 af Secondary=0.00 cfs 0.000 af Outflow=277.62 cfs 103.696 af

 Pond P-H: Region 6c
 Peak Elev=889.07' Storage=27.569 af Inflow=134.52 cfs 7.941 af

 Primary=3.81 cfs 5.766 af Secondary=0.00 cfs 0.000 af Outflow=3.81 cfs 5.766 af

 Pond P-I: Principal Spillway
 Peak Elev=878.60'
 Storage=127.623 af
 Inflow=576.23 cfs
 159.947 af

 Primary=40.88 cfs
 114.548 af
 Secondary=0.00 cfs
 0.000 af
 Outflow=40.88 cfs
 114.548 af

Summary for Pond P-A: West 15.3" Culvert

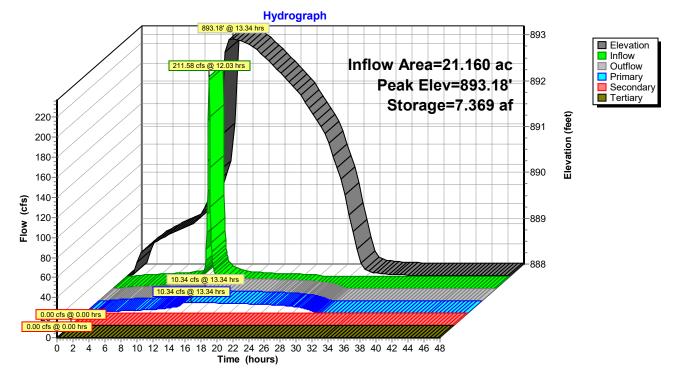
Finished cap in 2021, discharge is non-contact water. Lowest road point at 895.8.

Inflow Area =	21.160 ac, 97.92% Impervious, Inflow	Depth = 8.31" for 100-Year event
Inflow =	211.58 cfs @ 12.03 hrs, Volume=	14.653 af
Outflow =	10.34 cfs @ 13.34 hrs, Volume=	14.653 af, Atten= 95%, Lag= 78.7 min
Primary =	10.34 cfs @ 13.34 hrs, Volume=	14.653 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

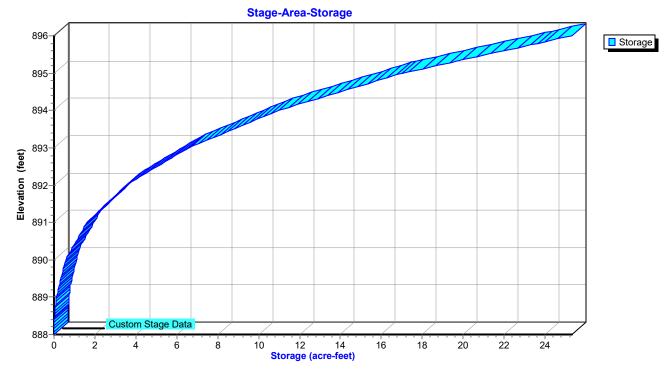
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 893.18' @ 13.34 hrs Storage= 7.369 af

Plug-Flow detention time= 291.2 min calculated for 14.653 af (100% of inflow) Center-of-Mass det. time= 290.7 min (1,032.4 - 741.7)

Volume	Invert	Avail.Storage	Storage Description
#1	888.00'	25.316 af	Custom Stage Data Listed below


Elevation (feet)	Cum.Store (acre-feet)
888.00	0.000
888.50	0.029
889.00	0.120
890.00	0.564
891.00	1.616
892.00	3.543
893.00	6.578
894.00	10.979
895.00	17.018
896.00	25.316

Device	Routing	Invert	Outlet Devices
#1	Primary	888.00'	15.3" Round Culvert
			L= 92.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 888.00' / 887.08' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.28 sf
#2	Secondary	894.00'	50.0' long x 40.0' breadth Auxilliary Spillway
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#3	Tertiary	895.80'	40.0' long x 20.0' breadth Road Overtop
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63


Primary OutFlow Max=10.34 cfs @ 13.34 hrs HW=893.18' (Free Discharge) ←1=Culvert (Inlet Controls 10.34 cfs @ 8.10 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=888.00' (Free Discharge) 2=Auxilliary Spillway (Controls 0.00 cfs)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=888.00' (Free Discharge) **3=Road Overtop** (Controls 0.00 cfs)

Pond P-A: West 15.3" Culvert

Pond P-A: West 15.3" Culvert

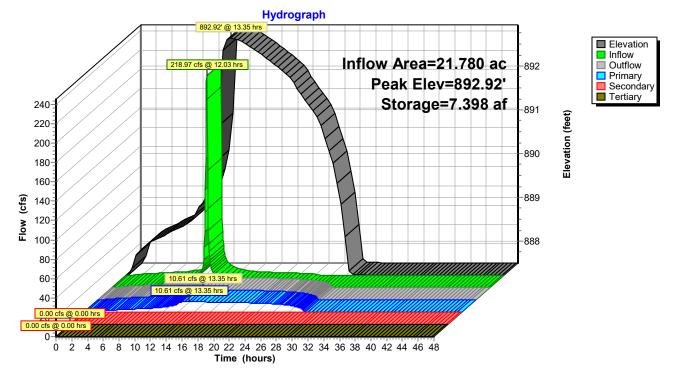
Summary for Pond P-B: East 15.3" Culvert

Finished cap in 2021, discharge is non-contact water. Lowest road point at 895.8.

Inflow Area =	21.780 ac, 96.10% Impervious, Inflow I	Depth = 8.31" for 100-Year event
Inflow =	218.97 cfs @ 12.03 hrs, Volume=	15.082 af
Outflow =	10.61 cfs @ 13.35 hrs, Volume=	15.082 af, Atten= 95%, Lag= 79.1 min
Primary =	10.61 cfs @ 13.35 hrs, Volume=	15.082 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 892.92' @ 13.35 hrs Storage= 7.398 af

Plug-Flow detention time= 273.2 min calculated for 15.082 af (100% of inflow) Center-of-Mass det. time= 272.6 min (1,014.1 - 741.5)


Volume	Invert	Avail.Stora	ge Storage Description
#1	887.50'	33.070	af Custom Stage Data Listed below
	0		
Elevatio	-		
(fee	/	<u>`</u>	
887.5		.000	
888.0		.004	
888.5		.039	
889.0	-	.136	
890.0		.599	
891.0		.678	
892.0		.839	
893.0	-	.723	
894.0		.662	
895.0		.025	
896.0	0 33	.070	
Davias	Deutine	lun vin ut	Quitlat Devices
Device	Routing	Invert	Outlet Devices
#1	Primary	887.50'	15.3" Round Culvert
			L= 96.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 887.50' / 886.54' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.28 sf
#2	Secondary	894.00'	50.0' long x 40.0' breadth Auxilliary Spillway
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#3	Tertiary	895.80'	40.0' long x 20.0' breadth Road Overtop
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63 2.64

Primary OutFlow Max=10.61 cfs @ 13.35 hrs HW=892.92' (Free Discharge) ←1=Culvert (Inlet Controls 10.61 cfs @ 8.31 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=887.50' (Free Discharge) 2=Auxilliary Spillway (Controls 0.00 cfs)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=887.50' (Free Discharge) **3=Road Overtop** (Controls 0.00 cfs)

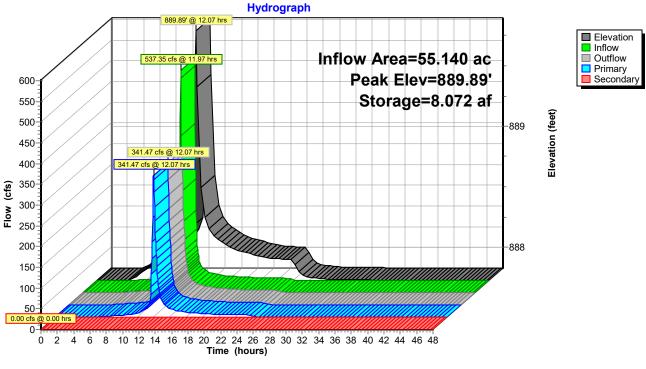
Pond P-B: East 15.3" Culvert

Pond P-B: East 15.3" Culvert

Summary for Pond P-C: Region 2 - CCR

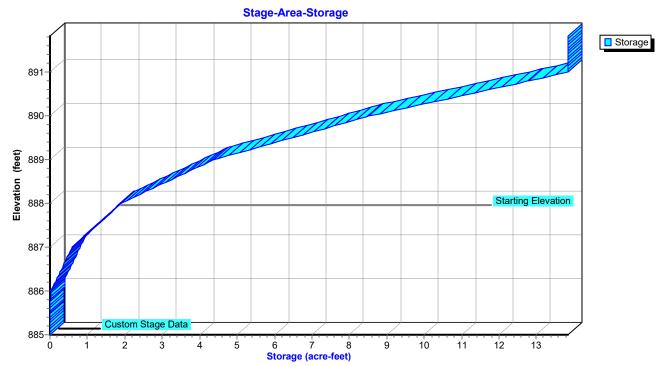
Lowest road point at 890.8

Inflow Area = Inflow = Outflow = Primary = Secondary =	537.35 cfs @ 341.47 cfs @ 341.47 cfs @	0.00% Impervious, Inflov 11.97 hrs, Volume= 12.07 hrs, Volume= 12.07 hrs, Volume= 0.00 hrs, Volume=	w Depth = 6.74" for 100-Year event 30.993 af 30.992 af, Atten= 36%, Lag= 5.7 min 30.992 af 0.000 af		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 887.83' Storage= 1.663 af Peak Elev= 889.89' @ 12.07 hrs Storage= 8.072 af (6.409 af above start)					


Plug-Flow detention time= 70.4 min calculated for 29.299 af (95% of inflow) Center-of-Mass det. time= 22.0 min (808.8 - 786.7)

Volume	Inve	rt Avail.Stor	age Storage Des	scription
#1	885.0	0' 13.84	3 af Custom Sta	ge Data Listed below
Elevatio (fee		m.Store cre-feet)		
885.0	00	0.000		
885.5	50	0.001		
886.0	00	0.021		
887.0	00	0.592		
888.0	00	1.882		
889.0	00	4.375		
890.0	00	8.534		
891.0	00	13.843		
Device	Routing	Invert	Outlet Devices	
#1	Primary	887 83'	Channel/Reach	using Reach R-C: Connecting Ditch

_	#1 #2	Primary Secondary	Channel/Reach using Reach R-C: Connecting Ditch 40.0' long x 20.0' breadth Road Overtop			
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63			

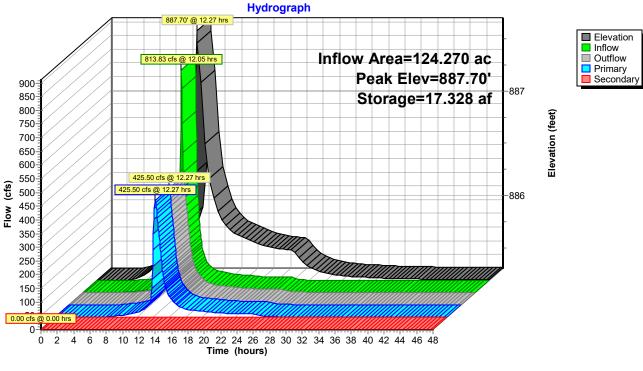

Primary OutFlow Max=336.82 cfs @ 12.07 hrs HW=889.87' TW=889.36' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=887.83' (Free Discharge) 2=Road Overtop (Controls 0.00 cfs)

Pond P-C: Region 2 - CCR

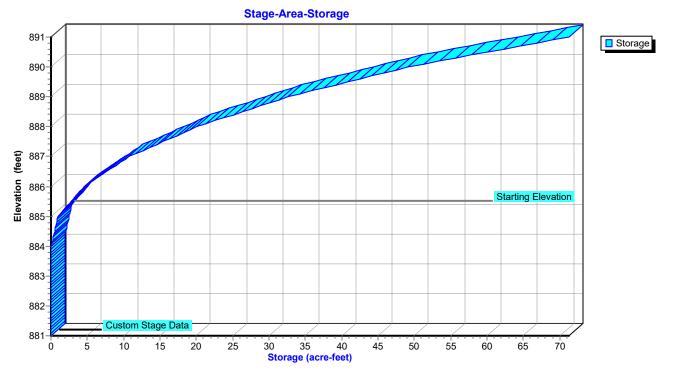
Summary for Pond P-D: Region 3/4 CCR

Lowest road point at 890.4


Inflow Area = Inflow = Outflow = Primary = Secondary =	813.83 cfs @ 425.50 cfs @ 425.50 cfs @	0.00% Impervious, Infl 12.05 hrs, Volume= 12.27 hrs, Volume= 12.27 hrs, Volume= 0.00 hrs, Volume=	ow Depth = 6.74" for 100-Year event 69.848 af 69.826 af, Atten= 48%, Lag= 13.0 min 69.826 af 0.000 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 885.30' Storage= 2.058 af Peak Elev= 887.70' @ 12.27 hrs Storage= 17.328 af (15.269 af above start)						

Plug-Flow detention time= 68.0 min calculated for 67.767 af (97% of inflow) Center-of-Mass det. time= 37.6 min (849.4 - 811.8)

Volume	Invert	Avail.Storag	ge Storage Description
#1	881.00'	71.292	af Custom Stage Data Listed below
Elevatio	-		
(fee	t) (acre-f	eet)	
881.0	0 0.	000	
883.0	0 0.	.001	
884.0	0 0.	022	
885.0	0 0.	977	
886.0	0 4.	582	
887.0	0 10.	796	
888.0	0 20.	116	
889.0	0 32.	641	
890.0	0 49.	091	
891.0	0 71.	292	
Device	Routing	Invert	Outlet Devices
#1	Primary	885.30'	Channel/Reach using Reach R-D: Connecting Ditch
#2	Secondary	890.40'	40.0' long x 20.0' breadth Road Overtop
	,		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63


Primary OutFlow Max=424.58 cfs @ 12.27 hrs HW=887.70' TW=887.49' (Dynamic Tailwater) **1=Channel/Reach** (Channel Controls 424.58 cfs @ 2.85 fps)

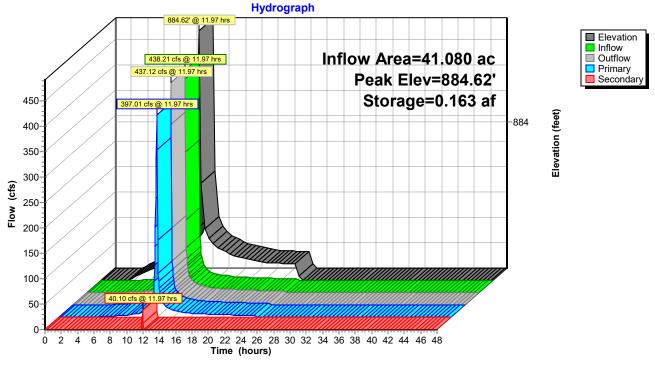
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=885.30' (Free Discharge) 2=Road Overtop (Controls 0.00 cfs)

Pond P-D: Region 3/4 CCR

Pond P-D: Region 3/4 CCR

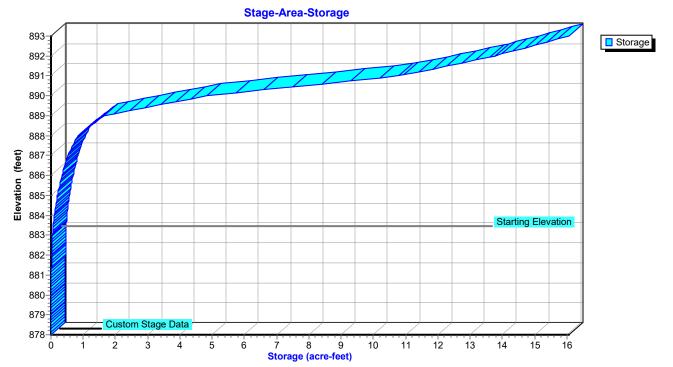
Summary for Pond P-E: Region 4 South

Lowest road point at 884.1. NOTE: This is not an exterior road, it overtops into Pond 3P.


Inflow Area = 41.080 ac, 0.00% Impervious, Inflow Depth = 6.74" for 100-Year events Inflow = 438.21 cfs @ 11.97 hrs, Volume= 23.090 af Outflow = 437.12 cfs @ 11.97 hrs, Volume= 23.090 af, Atten= 0%, Lag= 0.2 Primary = 397.01 cfs @ 11.97 hrs, Volume= 22.623 af Secondary = 40.10 cfs @ 11.97 hrs, Volume= 0.467 af						
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 883.13' Storage= 0.052 af Peak Elev= 884.62' @ 11.97 hrs Storage= 0.163 af (0.111 af above start) Plug-Flow detention time= 3.5 min calculated for 23.038 af (100% of inflow)						

Center-of-Mass det. time= 0.5 min (785.8 - 785.4)

Volume	Invert	Avail.Stora	ge Storage Description
#1	878.00'	16.070	af Custom Stage Data Listed below
Elevatio	n Cum.St	oro	
(fee	-		
	/ /		
878.0		000	
879.0 880.0)01)03	
881.0)03)11	
882.0)24	
883.0)45	
884.0		101	
885.0		201	
886.0		338	
887.0		526	
888.0		328	
889.0		552	
890.0		329	
891.0	0 10.8	308	
892.0	0 13.7	774	
893.0	0 16.0)70	
Device	Routing	Invert	Outlet Devices
#1	Primary	883.13'	Channel/Reach using Reach R-E: (new Reach)
#2	Secondary	884.10'	40.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63


Primary OutFlow Max=387.14 cfs @ 11.97 hrs HW=884.60' TW=884.60' (Dynamic Tailwater) **1=Channel/Reach** (Channel Controls 387.14 cfs @ 20.41 fps)

Secondary OutFlow Max=37.80 cfs @ 11.97 hrs HW=884.60' TW=883.96' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 37.80 cfs @ 1.90 fps)

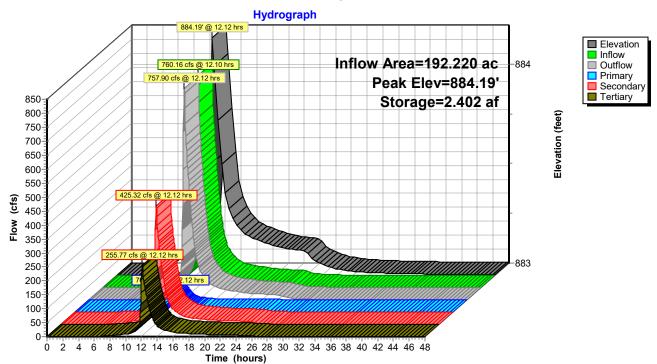
Pond P-E: Region 4 South

Summary for Pond P-F: Region 5 CCR

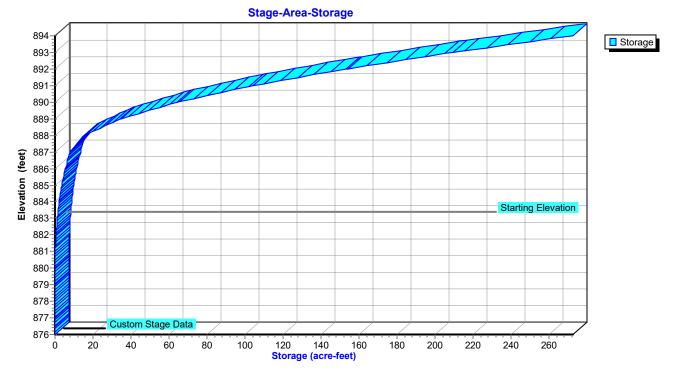
Lowest road point at 889.1

Inflow = 7 Outflow = 7 Primary = Secondary = 4	760.16 cfs @ 757.90 cfs @ 76.82 cfs @ 425.32 cfs @	0.00% Impervious, Inflow 12.10 hrs, Volume= 12.12 hrs, Volume= 12.12 hrs, Volume= 12.12 hrs, Volume= 12.12 hrs, Volume=	Depth = 6.77" for 100-Year event 108.481 af 108.478 af, Atten= 0%, Lag= 1.0 min 10.995 af 60.875 af 36.608 af		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs					

Starting Elev= 883.00' Storage= 1.163 af Peak Elev= 884.19' @ 12.12 hrs Storage= 2.402 af (1.239 af above start)


Plug-Flow detention time= 17.2 min calculated for 107.315 af (99% of inflow) Center-of-Mass det. time= 2.4 min (844.4 - 841.9)

Volume	Invert	Avail.Stora	ge Storage Description
#1	876.00'	272.722	af Custom Stage Data Listed below
F lavistic		O t	
Elevatio (fee	-	-feet)	
	/		
876.0	-	0.000	
876.5		0.004	
877.0		0.007	
878.0	-	0.015	
879.0	-).032	
880.0	-	0.066	
881.0	-).158 . 490	
882.0).489	
883.0		1.163	
884.0		2.133	
885.0	-	3.512	
886.0	-	5.428	
887.0	-	3.037	
888.0	-	5.115	
889.0		4.979	
890.0		4.460	
891.0		4.306	
892.0		3.039	
893.0		9.642 2.722	
894.0	10 272	2.122	
Device	Routing	Invert	Outlet Devices
#1	Primary	883.00'	Channel/Reach using Reach R-F1: Connecting Ditch
#2	Secondary	883.00'	Channel/Reach X 3.00 using Reach R-F2: Connecting Ditch
#3	Tertiary	883.00'	Channel/Reach using Reach R-F3: Connecting Ditch
	-		


Primary OutFlow Max=76.13 cfs @ 12.12 hrs HW=884.19' TW=884.18' (Dynamic Tailwater) ←1=Channel/Reach (Channel Controls 76.13 cfs @ 9.72 fps)

Secondary OutFlow Max=421.51 cfs @ 12.12 hrs HW=884.19' TW=885.34' (Dynamic Tailwater) 2=Channel/Reach (Channel Controls 421.51 cfs @ 17.93 fps)

Tertiary OutFlow Max=253.48 cfs @ 12.12 hrs HW=884.19' TW=884.19' (Dynamic Tailwater) **3=Channel/Reach** (Channel Controls 253.48 cfs @ 32.36 fps)

Pond P-F: Region 5 CCR

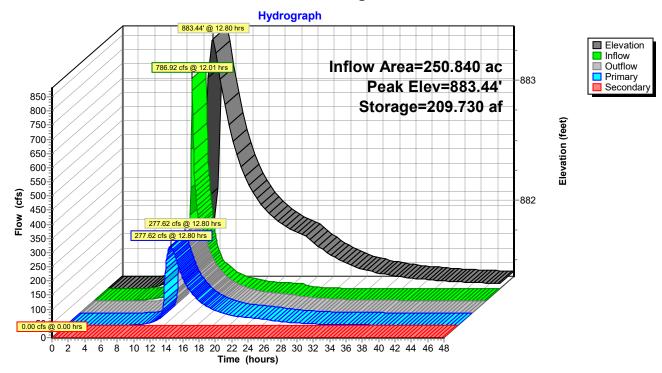
Pond P-F: Region 5 CCR

Summary for Pond P-G: Region 6b

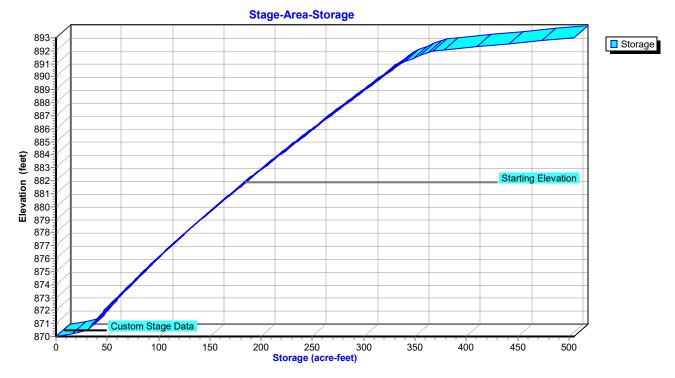
Lowest road point at 889.5. NOTE: This is not an exterior road, it overtops into Pond 6.

Inflow = 780 Outflow = 277 Primary = 277	50.840 ac, 0.00% Imp 6.92 cfs @ 12.01 hrs 7.62 cfs @ 12.80 hrs 7.62 cfs @ 12.80 hrs 0.00 cfs @ 0.00 hrs	, Volume= , Volume= , Volume=	104.352 af	for 100-Year event en= 65%, Lag= 47.3 min	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 881.37' Storage= 176.931 af Peak Elev= 883.44' @ 12.80 hrs Storage= 209.730 af (32.800 af above start) Plug-Flow detention time= (not calculated: initial storage exceeds outflow)					

Center-of-Mass det. time= 134.6 min (981.0 - 846.4)


Volume	Invert	Avail.Storage	Storage Description
#1	870.00'	505.051 af	Custom Stage Data Listed below
Elevation	Cum.St		
(feet)	(acre-fe	eet)	
870.00	0.0	000	
870.46	30.4	466	
871.00	36.0	024	
872.00	47.2	226	
873.00	59.2	249	
874.00	71.8	877	
875.00	84.9	928	
876.00	98.3		
877.00	112.1		
878.00	126.2		
879.00	140.8		
880.00	155.8		
881.00	171.1		
882.00	186.7		
883.00	202.6		
884.00	218.6		
885.00	234.8		
886.00	251.1		
887.00	267.6		
888.00	284.3		
889.00	301.2		
890.00	318.2		
891.00	335.8		
892.00	367.3		
893.00	505.0	051	

	La Cygne IDF 2021
8-30-2021 La Cygne IDF Model Existing Conditions 20 Type II 24-hr	100-Year Rainfall=8.55"
Prepared by AECOM	Printed 10/2/2021
HydroCAD® 10.10-4a s/n 01723 © 2020 HydroCAD Software Solutions LLC	Page 24


Device	Routing	Invert	Outlet Devices
#1	Primary	881.37'	Channel/Reach using Reach R-G: Connecting Ditch
#2	Secondary	889.50'	40.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=277.60 cfs @ 12.80 hrs HW=883.44' TW=883.44' (Dynamic Tailwater) **1=Channel/Reach** (Channel Controls 277.60 cfs @ 12.14 fps)

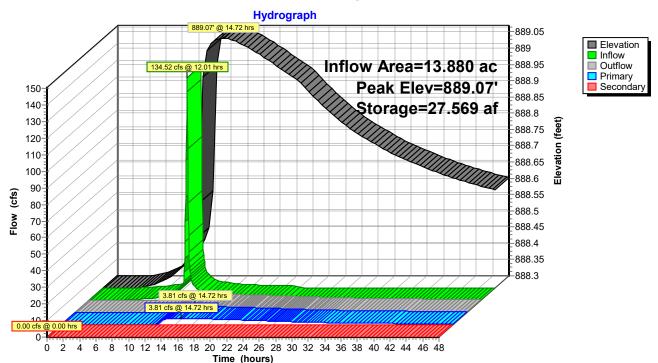
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=881.37' TW=881.37' (Dynamic Tailwater)

Pond P-G: Region 6b

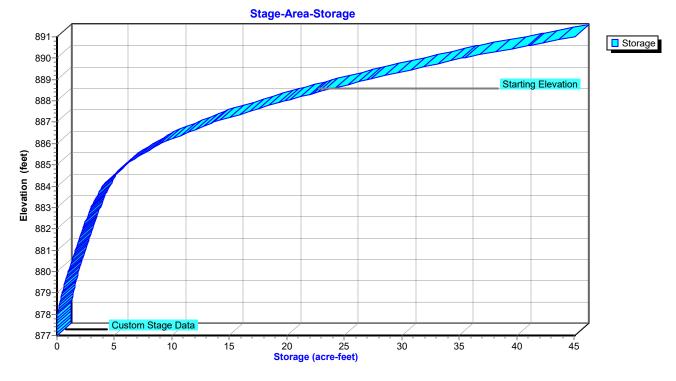
Pond P-G: Region 6b

Summary for Pond P-H: Region 6c

Lowest road point at 890.6


Inflow Area = Inflow = Outflow = Primary = Secondary =	134.52 cfs @ 3.81 cfs @ 3.81 cfs @	0.00% Impervious, Inflo 12.01 hrs, Volume= 14.72 hrs, Volume= 14.72 hrs, Volume= 0.00 hrs, Volume=	w Depth = 6.87" for 100-Year event 7.941 af 5.766 af, Atten= 97%, Lag= 162.7 min 5.766 af 0.000 af	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 888.30' Storage= 21.975 af Peak Elev= 889.07' @ 14.72 hrs Storage= 27.569 af (5.594 af above start)				

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 658.4 min (1,444.6 - 786.2)


Volume	Invert A	vail.Stora	ge Storage Description
#1	877.00'	45.073	af Custom Stage Data Listed below
Elevatior	u Cum.Sto	re	
(feet)			
877.00			
878.00			
879.00			
880.00	0.98	81	
881.00) 1.5	79	
882.00			
883.00			
884.00			
885.00			
886.00			
887.00 888.00		-	
889.00		-	
890.00	-		
891.00			
		. •	
Device	Routing	Invert	Outlet Devices
#1	Primary	888.30'	18.0" Round Culvert
			L= 60.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 888.30' / 887.40' S= 0.0150 '/' Cc= 0.900
			n= 0.014 Ductile Iron Pipe, Flow Area= 1.77 sf
#2	Primary	888.40'	18.0" Round Culvert
			L= 60.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 888.40' / 887.10' S= 0.0217 '/' Cc= 0.900
#3	Secondary	890.60'	n= 0.014 Ductile Iron Pipe, Flow Area= 1.77 sf 40.0' long x 20.0' breadth Exterior Road
#5	Geconically	090.00	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
			Cool. (English) 2.00 2.10 2.10 2.04 2.00 2.04 2.04 2.00

Primary OutFlow Max=3.81 cfs @ 14.72 hrs HW=889.07' TW=877.08' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.14 cfs @ 2.35 fps) -2=Culvert (Inlet Controls 1.67 cfs @ 2.20 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=888.30' (Free Discharge) -3=Exterior Road (Controls 0.00 cfs)

Pond P-H: Region 6c

Pond P-H: Region 6c

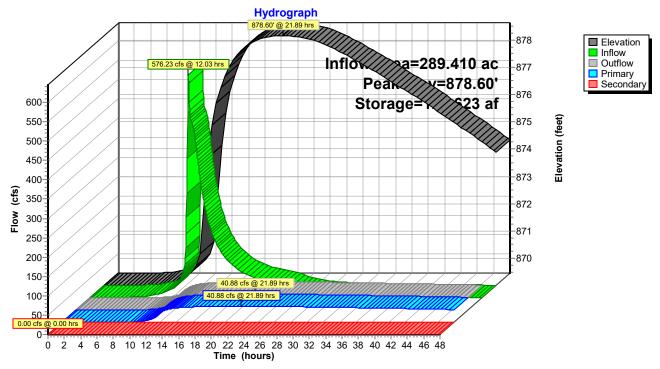
Summary for Pond P-I: Principal Spillway

Extra 0.46 ft added to elevations taken from 1979 plansheets to correct for change from 1929 datum to 1988. See coords.pdf in Resources folder.

Current starting elevation at 869.46 is the principal spillway.

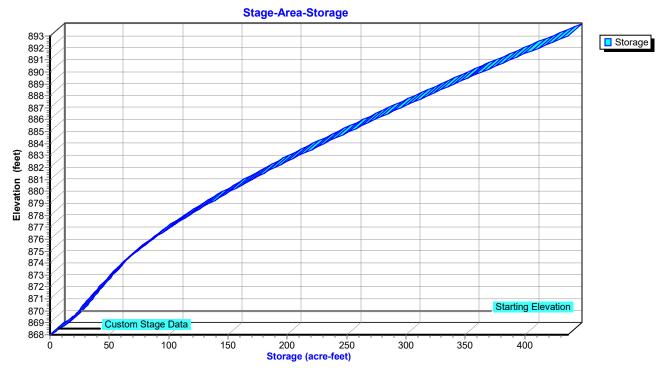
Lowest road point at 889.6

Inflow Area Inflow Outflow Primary Secondary	= 576. = 40. = 40.	.410 ac, 0.00% 23 cfs @ 12.03 88 cfs @ 21.89 88 cfs @ 21.89 00 cfs @ 0.00	hrs, Volume= 114.548 af, Atten= 93%, Lag= 591.3 min hrs, Volume= 114.548 af	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Starting Elev= 869.46' Storage= 19.635 af Peak Elev= 878.60' @ 21.89 hrs Storage= 127.623 af (107.987 af above start)				
Plug-Flow detention time= 1,173.3 min calculated for 94.913 af (59% of inflow) Center-of-Mass det. time= 807.1 min (1,757.0 - 949.9)				
Volume	Invert	Avail.Storage	Storage Description	
#1	868.00'	436.530 af	Custom Stage Data Listed below	


Elevation	Cum.Store
(feet)	(acre-feet)
868.00	0.000
869.00	15.830
870.46 871.00	27.908 32.593
	32.593 41.584
872.00 873.00	
874.00	50.981
••••••	60.904 73.040
875.00 876.00	73.040 86.620
877.00	101.569
878.00	117.543
879.00	134.404
880.00	152.070
881.00	170,490
882.00	189.798
883.00	209.994
884.00	209.994
885.00	252.069
886.00	273.771
887.00	295.800
888.00	318.133
889.00	340.747
890.00	363.691
891.00	387.389
892.00	411.911
893.00	436.530
030.00	400.000

Device	Routing	Invert	Outlet Devices
#1	Primary	865.46'	30.0" Round Culvert L= 268.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 865.46' / 864.60' S= 0.0032 '/' Cc= 0.900 n= 0.025, Flow Area= 4.91 sf
#2	Device 1	869.46'	3.2' long x 0.7' breadth Broad-Crested Rectangular Weir X 2.00 Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32 3.31 3.32
#3	Secondary	889.60'	40.0' long x 20.0' breadth Road Overtop Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=40.88 cfs @ 21.89 hrs HW=878.60' (Free Discharge)


1–2=Broad-Crested Rectangular Weir (Passes 40.88 cfs of 586.92 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=869.46' (Free Discharge) -3=Road Overtop (Controls 0.00 cfs)

Pond P-I: Principal Spillway

B.4 Existing Surface Contours

- 1. Western Air Mapping, Topographic Survey Plans for the La Cygne Generating Station, dated 2001.
- 2. Tukuh Technologies, LLC, Topographic Survey Plans for the La Cygne Generating Station, dated 2017.
- 3. Tukuh Technologies, LLC, Topographic Survey Plans for the La Cygne Generating Station, dated 2018.
- 4. AECOM, Phase 2 Design Surface, dated 2019.
- 5. BHC RHODES, Topographic Survey Plans for the La Cygne Generating Station, dated 2020.
- 6. BHC RHODES, Topographic Survey Plans for the La Cygne Generating Station, dated 2021.
- 7. No Author, Bathymetric Survey Plans for the La Cygne Generating Station, undated.

