

Periodic Inflow Design Flood Control System Plan Lower AQC Impoundment

La Cygne Generating Station

Evergy Metro, Inc. Project No. 149885

> Revision 2 9/15/2022

Periodic Inflow Design Flood Control System Plan Lower AQC Impoundment

prepared for

Evergy Metro, Inc. La Cygne Generating Station Linn County, Kansas

Project No. 149885

Revision 2 9/15/2022

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Evergy Metro, Inc. Periodic Inflow Design Flood Control System Plan Lower AQC Impoundment Project No. 149885

Report Index

<u>Chapter</u>		Number
Number	Chapter Title	of Pages
1.0	Background	2
2.0	Existing Conditions	1
3.0	Design Basis / Flood Control System	1
4.0	Hydrologic and Hydraulic Capacity	2
5.0	Results	1
6.0	Revisions and Amendments	1
7.0	References	1
8.0	Record of Revisions	1
Appendix A	Supporting Calculations	23

Certification

I hereby certify, as a Professional Engineer in the state of Kansas, that the information in this document was assembled under my direct personal charge and that this periodic run-on and run-off control system plan meets the applicable requirements of 40 CFR 257.82. This report is not intended or represented to be suitable for reuse by Evergy Metro, Inc. or others without specific verification or adaptation by the Engineer.

Autin Muchanthelon

Austin Muckenthaler, P.E. Kansas License #27432

Date: 9/15/2022

TABLE OF CONTENTS

Page No.

1.0	-			
	1.1	•	ition	
	1.2	Regulatory Requ	uirements	1-1
2.0	EXIS		DNS	2-1
3.0	DESI	GN BASIS / FLO	OOD CONTROL SYSTEM	
	3.1	Inflow Design F	Flood System Criteria	
		3.1.1 Capaci	ity Criteria	
		3.1.2 Freebo	oard Criteria	
		3.1.3 Flood I	Routing Design Criteria	
	3.2		rvey	
4.0				
4.0	4.1		HYDRAULIC CAPACITY	
	4.1		ence Interval and Rainfall Duration	
			Il Distribution and Depth	
			sin Characteristics	
			e Capacity	
	4.2	0	Dutflows	
		Ĩ		
5.0	RESU	LTS		5-1
6.0	REVI	SIONS AND AN	IENDMENTS	6-1
7.0	REFE	RENCES		7-1
8.0	RECO	RD OF REVISI	IONS	8-1

APPENDIX A – SUPPORTING CALCULATIONS

LIST OF TABLES

Page No.

Table 5-1: Summary of HydroCAD Results	. 5-	1
--	------	---

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
Burns & McDonnell	Burns & McDonnell Engineering Company, Inc.
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
CN	curve number
EPA	Environmental Protection Agency
Evergy	Evergy Metro, Inc.
KDHE	Kansas Department of Health and Environment
La Cygne	La Cygne Generating Station
NAVD88	North American Vertical Datum of 1988
NDPES	National Pollutant Discharge Elimination System
NOAA	National Oceanic and Atmospheric Administration
NRCS	Natural Resources Conservation Service
PFDS	Precipitation Frequency Data Server
RCRA	Resource Conservations and Recovery Act
SCS	Soil Conservation Service
TR-55	SCS Technical Release 55
U.S.C.	United States Code
USDA	United States Department of Agriculture
W.S.E.	Water Surface Elevation

1.0 BACKGROUND

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual Rule (CCR Rule) to regulate the disposal of CCR materials generated at operating coal-fired generating stations. The rule is being administered as part of the Resource Conservation and Recovery Act [RCRA, 42 United States Code (U.S.C.) §6901 et seq.], under Subtitle D.

Evergy Metro, Inc. (Evergy) is subject to the CCR Rule and as such must develop and update an inflow design flood control system plan for the Lower AQC Impoundment at La Cygne Generating Station (La Cygne). The Lower AQC Impoundment is an existing CCR surface impoundment as defined by 40 Code of Federal Regulations (CFR) §257.82. This report serves as a revision to the latest periodic update to the inflow design flood control system plan which was originally developed by Kansas City Power & Light (now Evergy) in 2016, with the support of calculations prepared by AECOM. This revision is being updated to reflect work on site which has changed the drainage area of the Lower AQC Impoundment. This inflow design flood control system plan is in addition to, not in place of, any other applicable site permits, environmental standards, or work safety practices.

1.1 Facility Information

Name of Facility:	La Cygne Generating Station
Name of CCR Unit:	Lower AQC Impoundment
Name of Operator:	Evergy Metro, Inc.
Facility Mailing Address:	25166 E 2200th Rd La Cygne, KS 66040
Location:	Approximately seven miles east of La Cygne, KS
Facility Description:	The La Cygne Generating Station has two coal-fired units that produce fly ash, bottom ash, and gypsum. CCR not beneficially used is transported to the on-site landfill for disposal. The Lower AQC Impoundment is no longer actively used for CCR disposal. Related landfill facilities include a groundwater monitoring system, stormwater management systems, and haul/access roads.

1.2 Regulatory Requirements

Per 40 CFR §257.82, the inflow design flood control system plan must contain documentation (including supporting engineering calculations) that the control system has been designed and constructed to meet the applicable requirements of 40 CFR 257.82. The owner or operator of a CCR unit must prepare a written plan that includes the information specified in 40 CFR 257.82 (a) and (b) which is as follows:

- (a) Design, construct, operate, and maintain an inflow design flood control system as specified:
 - The inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood specified in paragraph (3);
 - (2) The inflow design flood control system must adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood specified in paragraph (3);
 - (3) The inflow design flood is: (i) For a high hazard potential CCR surface impoundment, the probable maximum flood; (ii) For a significant hazard potential CCR surface impoundment, the 1,000-year flood; (iii) For a low hazard potential CCR surface impoundment, the 100-year flood; or (iv) For an incised CCR surface impoundment, the 25-year flood.
- (b) Discharge from the CCR unit must be handled in accordance with the surface water requirements under: §257.3 – 3.

Per 40 CFR §257.81(c)(5), Evergy must obtain certification from a qualified professional engineer that the inflow design flood control system plan, and subsequent updates to the plan, meet the requirements of 40 CFR §257.82. This sealed document serves as that certification.

2.0 EXISTING CONDITIONS

The Lower AQC Impoundment was commissioned in 1973. The Impoundment was constructed with embankments having a maximum height of 24 feet high and a crest elevation of 864.0 feet (NAVD88). The embankments have 3H:1V side slopes. The Lower AQC Impoundment is primarily used as a holding basin for formerly sluiced CCR materials, AQC recycling water, and onsite stormwater. The Impoundment watershed includes rainfall directly into the unit, but no longer includes the Upper AQC Impoundment; or the on-site CCR landfill due to recent grading and stormwater system modifications. The Lower AQC Impoundment is operated as a non-discharge unit; however, there is an emergency overflow spillway at the northwest corner of the Lower AQC Impoundment which consists of a 120-foot-wide earth embankment with 5H:1V side slopes and an invert elevation of 862.3 feet. The water from the emergency spillway discharges directly into the discharge canal. The unit is now operated at a level that does not typically exceed 860.0 feet.

3.0 DESIGN BASIS / FLOOD CONTROL SYSTEM

3.1 Inflow Design Flood System Criteria

3.1.1 Capacity Criteria

The CCR Rule requires that CCR surface impoundments have adequate hydrologic and hydraulic capacity to manage flows from the inflow design flood. For this analysis, the criteria were interpreted to mean that the surface impoundment must be able to accept inflows from the design flood event without overtopping.

3.1.2 Freeboard Criteria

The CCR documentation further discusses that operating freeboard must be adequate to meet performance standards, but a specific freeboard is not defined. For this analysis, it was assumed a 1-foot minimum freeboard shall be maintained during the inflow design flood event.

3.1.3 Flood Routing Design Criteria

The La Cygne Lower AQC Impoundment has been categorized by others as a "Low Hazard Potential CCR Impoundment", therefore the inflow design flood is a 100-year flood event per 40 CFR§257.82 (a)(3)(iii).

3.2 Topographic Survey

Survey data was utilized in this analysis for determining storage volumes, drainage paths, and drainage areas. Survey performed by BHC Rhodes from December 2020 to June 2021 was the primary source for this information. The site coordinate system is based on control established by McClure Engineering Company in the Kansas South Zone, U.S. Feet, State Plane, NAD83 Coordinate System.

4.0 HYDROLOGIC AND HYDRAULIC CAPACITY

Peak flow rates and runoff volumes were determined using the Soil Conservation Service's (SCS) [now known as the Natural Resources Conservation Service (NRCS)] run-off curve number (CN) method with HydroCAD stormwater modeling software. Inputs to the HydroCAD model are discussed in more detail in the following sections.

4.1 Hydrology

4.1.1 Recurrence Interval and Rainfall Duration

The La Cygne Lower AQC Impoundment inflow design flood is a 100-year flood event per 40 CFR§257.82 (a)(3)(iii). A storm duration is not specified under 40 CFR §257.82 or other pertinent inflow flood design sections within the CCR Rule; therefore, a 24-hour storm duration was assumed since this is typically required by RCRA (40 CFR 258.26).

4.1.2 Rainfall Distribution and Depth

The SCS Type II rainfall distribution was used for computations associated with this evaluation. Precipitation data was acquired from the National Oceanic and Atmospheric Administration (NOAA) Precipitation Frequency Data Server (PFDS). Precipitation depth for the 100-year, 24-hour storm is 8.55 inches.

4.1.3 Subbasin Characteristics

The drainage areas were delineated using the topographic survey data described in Section 3.2. A sketch is provided in Appendix A which shows the drainage areas and flow paths used in the analysis.

The CN Method was used to estimate runoff from each drainage area. The CN is determined from several site characteristics, including the hydrologic soil group and ground cover type. Typical CN values from SCS Technical Release 55 (TR-55) are preloaded into HydroCAD and were referenced for this analysis. Based on Custom Soils Resource Report from the US Department of Agriculture (USDA) NRCS Web Soil Survey site, soils near the Lower AQC Impoundment are generally from Hydrologic Soil Group D. The common ground cover types of the contributing drainage areas consist of gravel roads, water surface, and CCR. CCR is not a typical ground cover type in TR-55, so a CN of 85 was assumed.

The time of concentration equations from TR-55 were used in HydroCAD to calculate time of concentration for each drainage area. Inputs for the equations were determined with reference to the surface characteristics of each drainage area.

4.1.4 Storage Capacity

When conducting the analysis, it was assumed that the impoundment water surface is at an elevation of 860.0 feet prior to the storm event, below the invert elevation of the emergency spillway (862.3). This is a conservative assumption since the operating level of the pond does not typically exceed 860.0.

Storage data was only inputted for elevations between the assumed water surface elevation (860.0) and the maximum available storage elevation in the pond (approximately 864.0 feet) using available survey data. There is approximately 230 acre-feet of storage in the impoundment between these levels.

4.2 Impoundment Outflows

The water surface elevation in the Lower AQC Impoundment is controlled by pumps during normal conditions and by the emergency spillway in extreme conditions. For this analysis, it was assumed that there is zero discharge through the pumps and any discharge will go through the emergency spillway.

5.0 RESULTS

The Lower AQC Impoundment was modeled for a 100-year, 24-hour storm event with the initial water surface elevation set at the maximum operating elevation (860.0 feet). The resulting runoff volume represents the amount of rainwater over the watershed area, reduced by the amount of infiltration that would be expected to occur for the types of soils and vegetation present. A summary of the results from the HydroCAD model have been provided in Table 5-1. The HydroCAD report, which is included in Appendix A, provides a routing diagram, input summary, and more detailed modeling results for the 100-year, 24-hour event.

CCR Unit	Initial W.S.E. (feet)	Peak W.S.E. (feet)	Flood Elevation (feet)	Freeboard (feet)
Lower AQC Impoundment	860.0	861.67	864.0	2.33

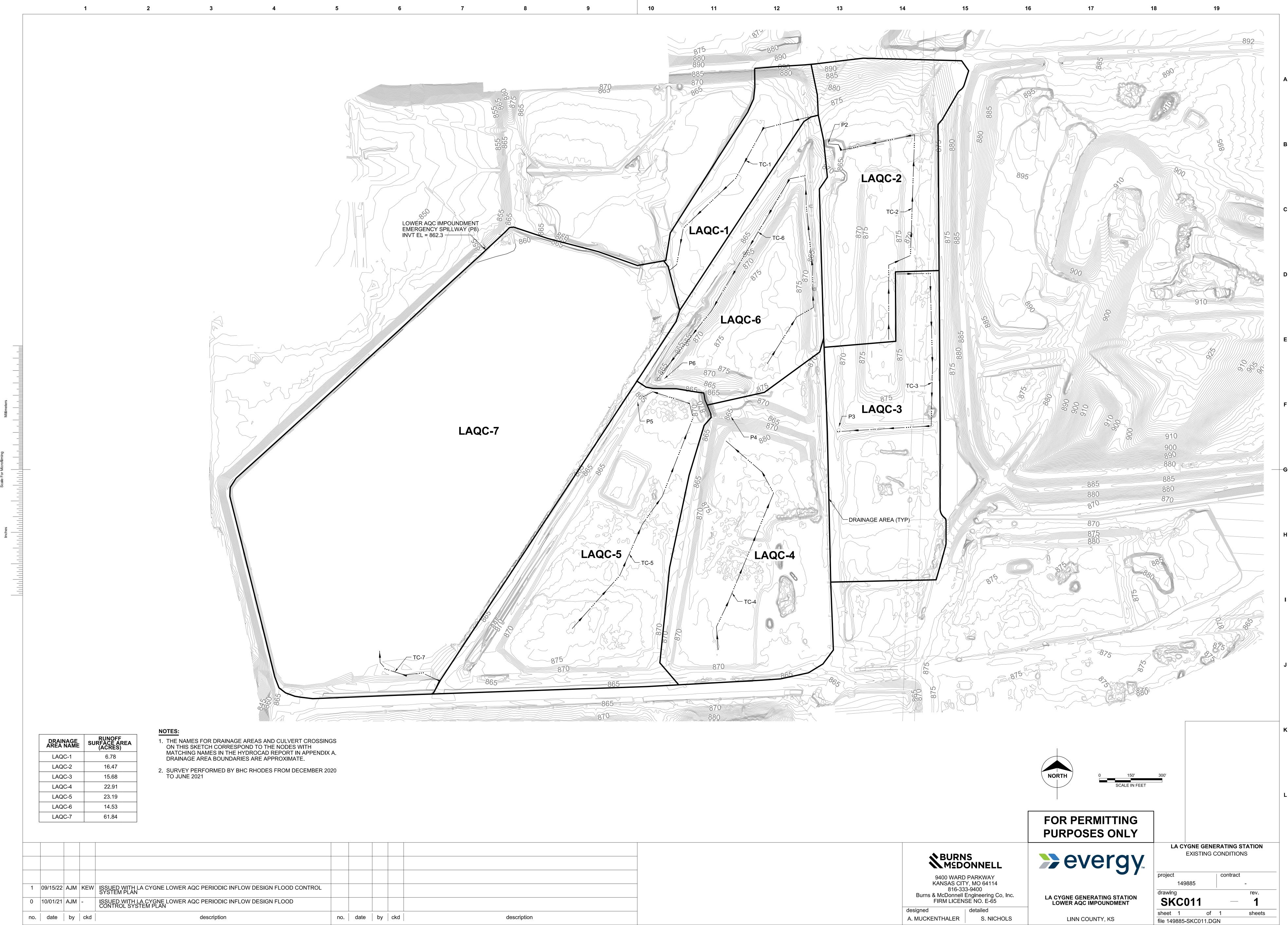
 Table 5-1: Summary of HydroCAD Results

There are no discharge flows into the Lower AQC Impoundment except for the perimeter road. Under the assumed conditions, the impoundment was able to contain runoff from the 100-year, 24-hour storm event while maintaining at least 1-foot of freeboard; all discharge goes through the emergency spillway and the embankments would not be overtopped. Additionally, the impoundment contains the surface water from the 100-year, 24-hour storm event with no discharge. It was therefore concluded that the inflow design flood control system of the La Cygne Lower AQC Impoundment both adequately manages flow into the CCR unit during and following the peak discharge of the inflow design flood (40 CFR §257.82 (a)(1)), and adequately manages flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood (40 CFR §257.82 (a)(2)).

Discharges from the Lower AQC Impoundment are directed to a permitted NPDES outfall. Per the current NPDES permit, all discharged water is tested for pollutants and the discharge meets the minimum regulatory requirements of the permit. Therefore, the facility does not cause a discharge of pollutants into waters of the United States that is in violation of the requirements of the NPDES under Section 402 of the Clean Water Act and thereby meets the requirements in §257.82 (b). Discharge from the Lower AQC Impoundment is handled in accordance with the surface water requirements of §257.3 – 3 during the 100-year, 24-hour flood event. Therefore, the Lower AQC Impoundment meets the requirements for certification under the CCR Rule.

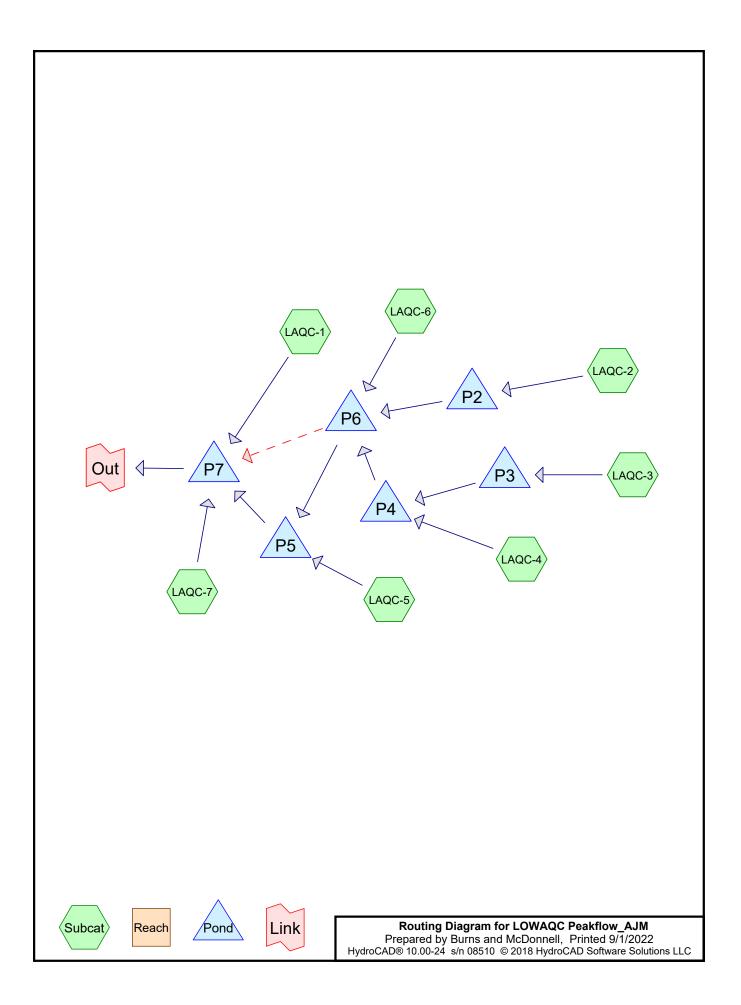
6.0 REVISIONS AND AMENDMENTS

Evergy may amend the plan at any time and is required to do so whenever there is a change in conditions which would substantially affect the written plan in effect. Evergy must prepare a periodic inflow design flood control system plan at least every five years. Each periodic plan or amendment to the written plan shall be certified by a qualified professional engineer in the State of Kansas. All amendments and revisions must be placed on the CCR public website. A record of revisions made to this document is included in Section 8.0.


7.0 REFERENCES

- U.S. Environmental Protection Agency, Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, 40 CFR §257, Federal Register 80, Subpart D, April 17, 2015.
- AECOM, Initial Inflow Design Flood Control System Plan, Lower AQC Impoundment, La Cygne Generating Station, October 13, 2016.
- 3. BHC, Topographic Survey, December 2020-June 2021.
- National Oceanic and Atmospheric Administration, NOAA Atlas 14 Point Precipitation Frequency Estimates, Volume 8, Version 2, Accessed: 2/19/2020.
- USDA Natural Resources Conservation Service, Web Soil Survey, Hydrologic Soil Groups Linn County, Kansas; Accessed: 2/24/2020.
- 6. SCS Engineers, Initial Hazard Potential Classification Assessment Report, Lower AQC Impoundment, Kansas City Power & Light Company, La Cygne Generating Station, dated October 7, 2016 (updated October 2021).
- 7. USDA Natural Resources Conservation Service, Technical Release 55, dated June 1986.

Revision Number	Date	Revisions Made	By Whom
0	10/13/2016	Initial Issue	AECOM
1	10/13/2021	Periodic Update	Burns & McDonnell
2	9/15/2022	Revised Lower AQC drainage area and updated impacted calculations	Burns & McDonnell


8.0 RECORD OF REVISIONS

APPENDIX A – SUPPORTING CALCULATIONS

C:\BMCD_LIB\pw_connect\dms17478\149885-SKC011.dgn

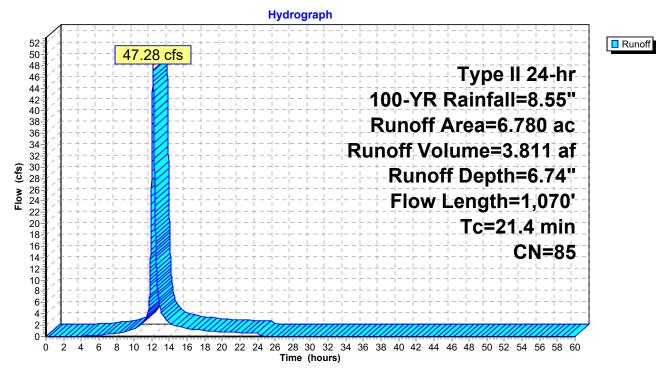
by	ckd	description
	by	by ckd

Printed 9/1/2022 Page 2

Area Listing (all nodes)

	Area	CN	Description
	acres)		(subcatchment-numbers)
12	4.543	85	CCR HSG D (LAQC-1, LAQC-2, LAQC-3, LAQC-4, LAQC-5, LAQC-6, LAQC-7)
	7.320	91	Gravel roads, HSG D (LAQC-2, LAQC-3, LAQC-4, LAQC-5, LAQC-6)
2	9.537	98	Water Surface, HSG D (LAQC-7)

Summary for Subcatchment LAQC-1:

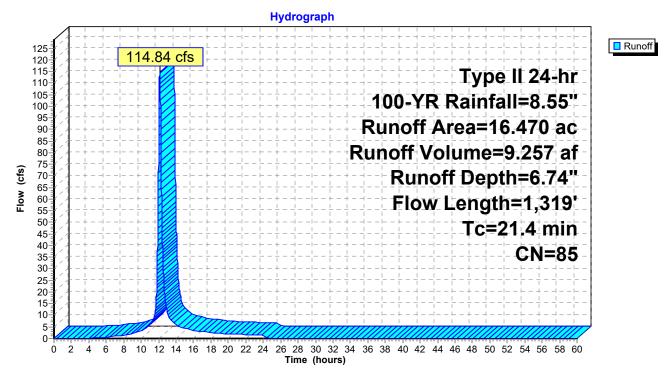

Runoff = 47.28 cfs @ 12.13 hrs, Volume= 3.811 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"

_	Area	(ac) C	N Des	cription		
*	6.	780 8	35 CCF	R HSG D		
	6.	780	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.3	150	0.0330	1.94		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.64"
	0.8	81	0.0120	1.76		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	4.1	250	0.0040	1.02		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	15.2	589	0.0016	0.64		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
-	01.4	1 070	Tatal			

21.4 1,070 Total

Subcatchment LAQC-1:

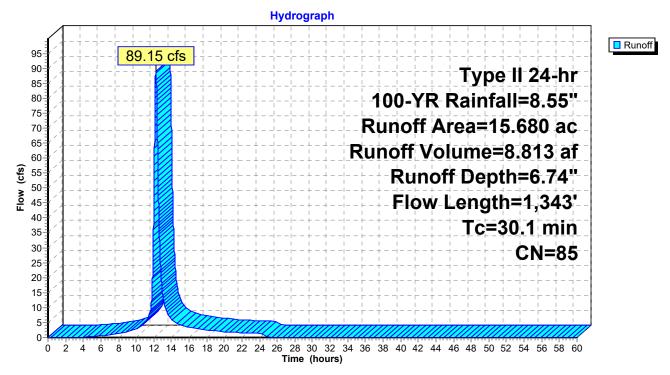

Summary for Subcatchment LAQC-2:

Runoff = 114.84 cfs @ 12.13 hrs, Volume= 9.257 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"

	Area	(ac) C	N Desc	cription		
*	* 15.180 85 CCR HSG D					
	1.	290 9	91 Grav	<u>el roads, l</u>	HSG D	
	16.	470 8		ghted Aver		
	16.	470	100.	00% Pervi	ous Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.4	150	0.0070	1.05		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.64"
	2.3	255	0.0130	1.84		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	16.7	914	0.0032	0.91		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	21.4	1,319	Total			

Subcatchment LAQC-2:

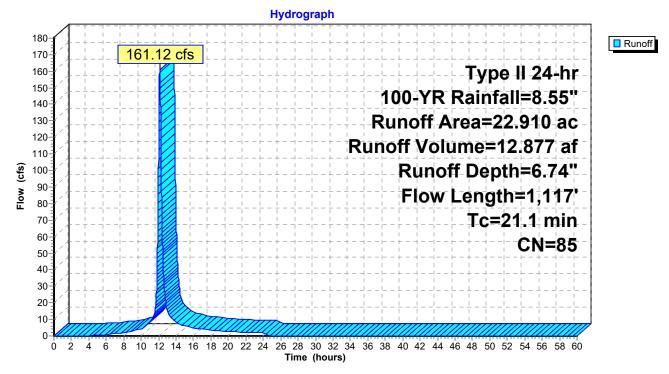

Summary for Subcatchment LAQC-3:

Runoff = 89.15 cfs @ 12.24 hrs, Volume= 8.813 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"

	Area	(ac) C	N Dese	cription		
*	* 14.860 85 CC			R HSG D		
_	0.	820 9	91 Grav	/el roads, ł	ISG D	
	15.	680 8	35 Weig	ghted Aver	age	
	15.	680	100.	00% Pervi	ous Area	
	-				• •	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.4	150	0.0070	1.05		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.64"
	21.4	744	0.0013	0.58		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	6.3	449	0.0055	1.19		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	30.1	1,343	Total			

Subcatchment LAQC-3:



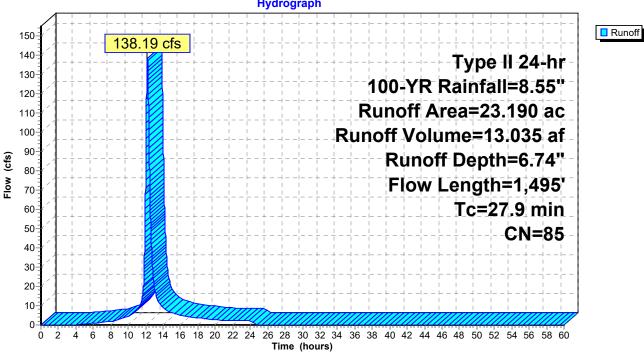
Prepared	d by B	eakflow_AJM Surns and McDo 20-24_s/n 08510	onnell © 2018 HydroCAD Softwar		100-YR Rainfall=8.55" Printed 9/1/2022 Page 6		
<u></u>			ummary for Subcate				
Runoff	=	161.12 cfs @	12.12 hrs, Volume=	12.877 af, Depth= 6.	74"		
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"							
A							

_	Area	(ac) C	N Dese	cription		
ł	[*] 22.	060 8	35 CCF	R HSG D		
_	0.	850 9	91 Grav	/el roads, l	HSG D	
	22.	910 8	35 Weig	ghted Aver	age	
22.910 100.00% Pervious Area			00% Pervi	ous Area		
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.5	150	0.0060	0.98		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.64"
	18.6	967	0.0029	0.87		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	04.4	4 4 4 7	Tatal			

21.1 Total 1,117

Subcatchment LAQC-4:

LOWAQC Peakflow_AJM Prepared by Burns and McDonnell	Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022						
HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Softwa	are Solutions LLC Page 7						
Summary for Subcatchment LAQC-5:							
Runoff = 138.19 cfs @ 12.21 hrs, Volume=	13.035 af, Depth= 6.74"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Type II 24-hr 100-YR Rainfall=8.55"	, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs						
Area (ac) CN Description							
* 21.480 85 CCR HSG D							
1.710 91 Gravel roads, HSG D							
23.190 85 Weighted Average							
23.190 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Desci (min) (feet) (ft/ft) (ft/sec) (cfs)	iption						
	t Flow, th surfaces n= 0.011 P2= 3.64"						


27.9 1,495 Total

1,345 0.0030

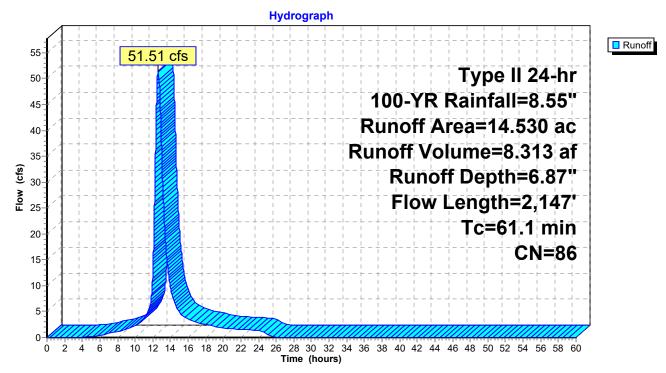
25.4

Subcatchment LAQC-5:

Shallow Concentrated Flow, Unpaved Kv= 16.1 fps

0.88

Hydrograph

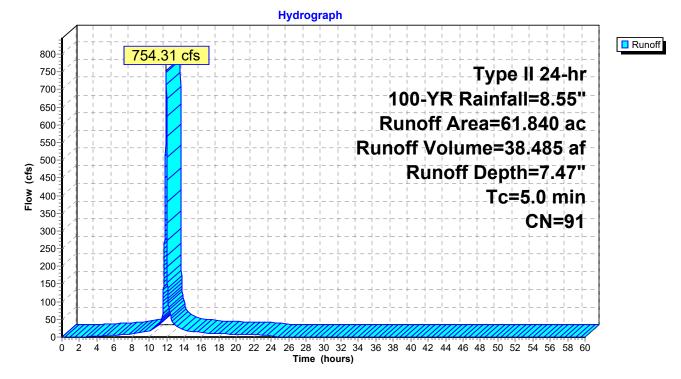

Summary for Subcatchment LAQC-6:

Runoff = 51.51 cfs @ 12.62 hrs, Volume= 8.313 af, Depth= 6.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"

	Area	(ac) C	N Desc	cription		
*				R HSG D		
	2.	<u>650 9</u>	91 Grav	<u>/el roads, l</u>	ISG D	
	14.	530 8	86 Weig	ghted Aver	age	
	14.	530	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.1	150	0.0100	1.21		Sheet Flow,
	1.3	147	0.0130	1.84		Smooth surfaces n= 0.011 P2= 3.64" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	57.7	1,850	0.0011	0.53		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	61.1	2,147	Total			

Subcatchment LAQC-6:



Runoff	=	754.31 cfs @	11.96 hrs, Volume=	38.485 af, Depth= 7.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=8.55"

	Area	(ac)	CN	Desc	ription		
*	32.	303	85	CCR	HSG D		
_	29.	537	98	Wate	er Surface,	, HSG D	
	61.	840	91		hted Aver		
	32.	303		52.24	4% Pervio	us Area	
	29.	537		47.70	6% Imperv	vious Area	
	т.	1	11-	01	\/_l;t+.	0	Description
		Leng		Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,
							-

Subcatchment LAQC-7:

La Cygne LAQC IDF

LOWAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 10

Summary for Pond P2:

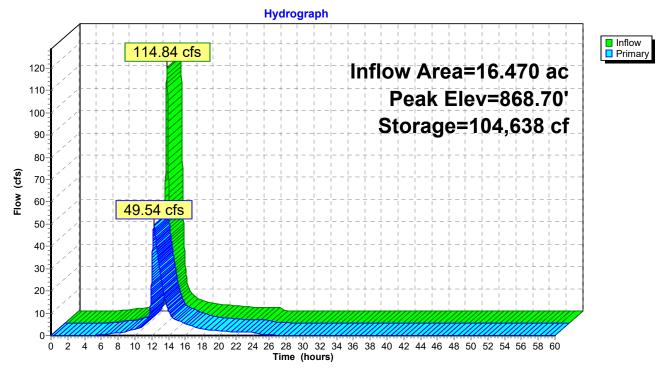
Inflow Area =	16.470 ac,	0.00% Impervious, Inflow [Depth = 6.74" for 100-YR event
Inflow =	114.84 cfs @	12.13 hrs, Volume=	9.257 af
Outflow =	49.54 cfs @	12.26 hrs, Volume=	9.255 af, Atten= 57%, Lag= 7.8 min
Primary =	49.54 cfs @	12.26 hrs, Volume=	9.255 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 868.70' @ 12.41 hrs Surf.Area= 86,772 sf Storage= 104,638 cf

Plug-Flow detention time= 45.4 min calculated for 9.255 af (100% of inflow) Center-of-Mass det. time= 45.2 min (844.5 - 799.3)

Volume	Inve	ert Avail.Sto	rage Storag	e Description	
#1	865.0	00' 266,62	28 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	מר	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
865.0	00	7,040	0	0	
866.0	00	8,909	7,975	7,975	
867.0	00	22,985	15,947	23,922	
868.0	00	45,499	34,242	58,164	
870.0	00	162,965	208,464	266,628	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	865.00'	48.0" Roun	d Culvert	
#2	Primary	869.00'	L= 98.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 865.00' / 863.85' S= 0.0117 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 12.57 sf 100.0' long x 85.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63		

Primary OutFlow Max=49.53 cfs @ 12.26 hrs HW=868.61' TW=867.04' (Dynamic Tailwater) -1=Culvert (Outlet Controls 49.53 cfs @ 5.48 fps)


-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

LOWAQC Peakflow_AJM

Prepared by Burns and McDonnell HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLC

La Cygne LAQC IDF Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022

Pond P2:

LOWAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 12

Summary for Pond P3:

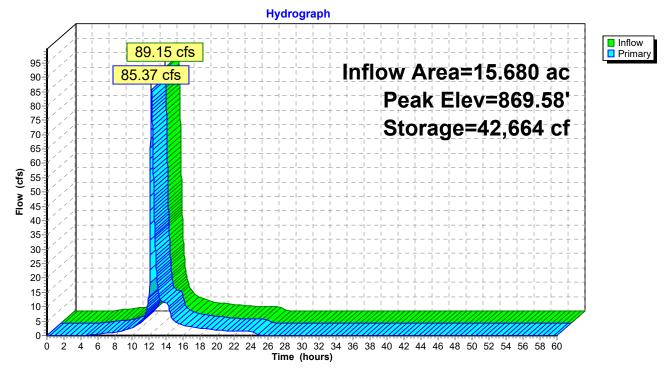
Inflow Area	=	15.680 ac,	0.00% Impervious, Inflow	Depth = 6.74"	for 100-YR event
Inflow =	=	89.15 cfs @	12.24 hrs, Volume=	8.813 af	
Outflow =	=	85.37 cfs @	12.29 hrs, Volume=	8.813 af, Atte	en= 4%, Lag= 3.4 min
Primary =	=	85.37 cfs @	12.29 hrs, Volume=	8.813 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 869.58' @ 12.30 hrs Surf.Area= 33,529 sf Storage= 42,664 cf

Plug-Flow detention time= 13.3 min calculated for 8.812 af (100% of inflow) Center-of-Mass det. time= 13.4 min (820.7 - 807.3)

Volume	Inv	ert Avail.Sto	rage Storag	e Description	
#1	866.9	92' 57,4	54 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
866.9	92	100	0	0	
868.0	00	9,801	5,347	5,347	
869.0		28,698	19,250	24,596	
870.0	00	37,018	32,858	57,454	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	866.92'		d Culvert X 3.00	
#2	Primary	869.00'	Inlet / Outlet n= 0.025 Co 60.0' long > Head (feet)	Invert= 866.92' / prrugated metal, (30.0' breadth B 0.20 0.40 0.60	b headwall, Ke= 0.900 865.57' S= 0.0150 '/' Cc= 0.900 Flow Area= 1.23 sf Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=85.35 cfs @ 12.29 hrs HW=869.58' TW=867.51' (Dynamic Tailwater)


-2=Broad-Crested Rectangular Weir (Weir Controls 71.66 cfs @ 2.06 fps)

LOWAQC Peakflow_AJM Prepared by Burns and McDoppell

Prepared by Burns and McDonnell HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLC

La Cygne LAQC IDF Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022 LLC Page 13

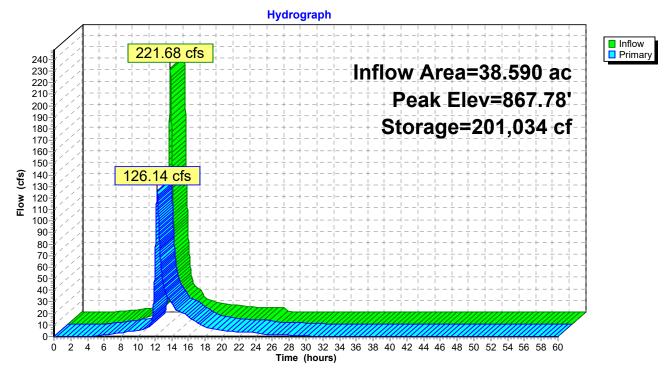
Pond P3:

LOWAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 14

Summary for Pond P4:

Inflow Area =		38.590 ac,	0.00% Impervious, Inflow	Depth = 6.74" for 100-YR event
Inflow =	:	221.68 cfs @	12.18 hrs, Volume=	21.691 af
Outflow =	:	126.14 cfs @	12.29 hrs, Volume=	21.691 af, Atten= 43%, Lag= 6.6 min
Primary =	•	126.14 cfs @	12.29 hrs, Volume=	21.691 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 867.78' @ 12.62 hrs Surf.Area= 95,277 sf Storage= 201,034 cf


Plug-Flow detention time= 63.7 min calculated for 21.691 af (100% of inflow) Center-of-Mass det. time= 63.7 min (871.5 - 807.8)

Volume	Inv	ert Avail.Sto	orage Sto	rage Description	
#1	864.0	00' 418,2	35 cf Cu	stom Stage Data (P	rismatic)Listed below (Recalc)
Elevatic (fee		Surf.Area (sq-ft)	Inc.Sto (cubic-fee		
864.0	00	1,850		0 0	
865.0)0	22,155	12,00	,	
867.0)0	93,631	115,78	36 127,789	
870.0)0	100,000	290,44	418,235	
Device #1	Routing Primary	Invert 864.00'	Head (fe	ig x 130.0' breadth et) 0.20 0.40 0.60	Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 .70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=126.14 cfs @ 12.29 hrs HW=867.50' TW=867.13' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 126.14 cfs @ 2.40 fps) LOWAQC Peakflow_AJM Type Prepared by Burns and McDonnell HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLC

La Cygne LAQC IDF *Type II 24-hr 100-YR Rainfall=8.55"* Printed 9/1/2022 plutions LLC Page 15

Pond P4:

LOWAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 16

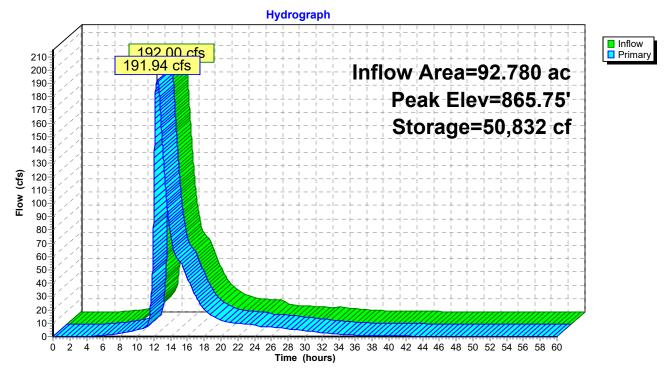
Summary for Pond P5:

Inflow Area	=	92.780 ac,	0.00% Impervious, Inflow	Depth > 6.70" for 100-YR event
Inflow	=	192.00 cfs @	12.42 hrs, Volume=	51.781 af
Outflow	=	191.94 cfs @	12.43 hrs, Volume=	51.780 af, Atten= 0%, Lag= 0.9 min
Primary	=	191.94 cfs @	12.43 hrs, Volume=	51.780 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 865.75' @ 12.43 hrs Surf.Area= 57,255 sf Storage= 50,832 cf

Plug-Flow detention time= 17.8 min calculated for 51.780 af (100% of inflow) Center-of-Mass det. time= 17.7 min (956.7 - 939.0)

Volume	Inv	vert Avail.Sto	rage	Storage I	Description	
#1	862.	30' 631,3	57 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
- 1		0		24.000	0	
Elevatio		Surf.Area		Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-	-feet)	(cubic-feet)	
862.3	30	100		0	0	
863.0	00	250		123	123	
864.0	00	500		375	498	
865.0	00	32,737	16	6,619	17,116	
866.0	00	65,457	49	,097	66,213	
870.0	00	217,115	565	5,144	631,357	
Device	Routing	Invert	Outlet	t Devices	i	
#1	Primary	862.30'	18.0"	Round	Culvert	
	,		L= 60	.0' CMF	, proiecting, no	headwall, Ke= 0.900
						862.30' S= 0.0000 '/' Cc= 0.900
						Flow Area= 1.77 sf
#2	Primary	865.50'				Broad-Crested Rectangular Weir
	ary	000.00		•		0.80 1.00 1.20 1.40 1.60
				· · ·		70 2.64 2.63 2.64 2.64 2.63
			0001.	(English)	, 2.00 2.10 2.	70 2.04 2.00 2.04 2.04 2.00


Primary OutFlow Max=191.94 cfs @ 12.43 hrs HW=865.75' TW=860.68' (Dynamic Tailwater) -1=Culvert (Barrel Controls 8.11 cfs @ 4.59 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 183.83 cfs @ 1.34 fps)

LOWAQC Peakflow_AJMTypePrepared by Burns and McDonnellHydroCAD® 10.00-24s/n 08510© 2018 HydroCAD Software Solutions LLC

La Cygne LAQC IDF Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022 LLC Page 17

Pond P5:

LOWAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 18

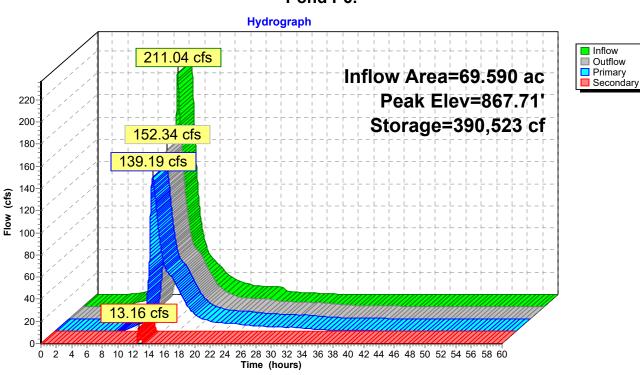
Summary for Pond P6:

Inflow Area =	69.590 ac,	0.00% Impervious, Inflow	Depth = 6.77" for 100-YR event
Inflow =	211.04 cfs @	12.32 hrs, Volume=	39.259 af
Outflow =	152.34 cfs @	12.70 hrs, Volume=	39.221 af, Atten= 28%, Lag= 22.9 min
Primary =	139.19 cfs @	12.70 hrs, Volume=	38.746 af
Secondary =	13.16 cfs @	12.70 hrs, Volume=	0.505 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 867.71' @ 12.70 hrs Surf.Area= 168,666 sf Storage= 390,523 cf

Plug-Flow detention time= 125.2 min calculated for 39.214 af (100% of inflow) Center-of-Mass det. time= 124.4 min (981.5 - 857.1)

Volume	Invert	Avail.Sto	rage S	storage	Description	
#1	862.30'	439,16	61 cf C	ustom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	on Surf	Area	Inc.S	tore	Cum.Store	
(fee		sq-ft)	(cubic-f		(cubic-feet)	
862.3		100		0	0	
863.0	0 40),920	14,	357	14,357	
865.0		,280	,	200	96,557	
866.0		1,610	,	445	153,002	
867.0		5,354	118,		271,484	
868.0	170	0,000	167,	677	439,161	
Device	Routing	Invert	Outlet	Devices	S	
#1	Primary	862.30'	48.0"	Round	Culvert	
						o headwall, Ke= 0.900
						862.30' S= 0.0000 '/' Cc= 0.900
40	0				•	Flow Area= 12.57 sf
#2	Secondary	867.50'				road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60
						70 2.64 2.63 2.64 2.64 2.63
#3	Primary	867.00'				road-Crested Rectangular Weir
	· · · · · · · · · · · · · · · · · · ·					0.80 1.00 1.20 1.40 1.60
						70 2.64 2.63 2.64 2.64 2.63
			·	-	-	


Primary OutFlow Max=139.18 cfs @ 12.70 hrs HW=867.71' TW=865.74' (Dynamic Tailwater) -1=Culvert (Barrel Controls 58.97 cfs @ 4.69 fps)

-3=Broad-Crested Rectangular Weir (Weir Controls 80.22 cfs @ 2.25 fps)

Secondary OutFlow Max=13.16 cfs @ 12.70 hrs HW=867.71' TW=860.78' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir (Weir Controls 13.16 cfs @ 1.24 fps) LOWAQC Peakflow_AJM

La Cygne LAQC IDF Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022 ons LLC Page 19

Prepared by Burns and McDonnell HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLC

Pond P6:

LowAQC Peakflow_AJMType II 24-hr100-YR Rainfall=8.55"Prepared by Burns and McDonnellPrinted 9/1/2022HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLCPage 20

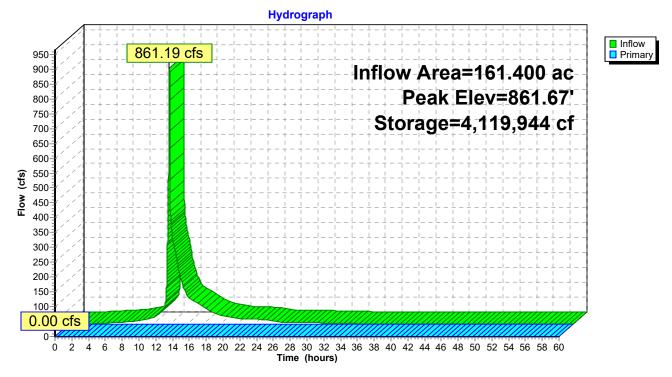
Summary for Pond P7:

Inflow Are	a =	161.400 ac, 18	8.30% Impervious, Int	flow Depth = 7.03" for 100-YR event			
Inflow	=	861.19 cfs @	11.96 hrs, Volume=	94.581 af			
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min			
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3							

Peak Elev= 861.67' @ 60.00 hrs Surf.Area= 2,497,799 sf Storage= 4,119,944 cf Flood Elev= 864.00' Surf.Area= 2,586,472 sf Storage= 10,041,783 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

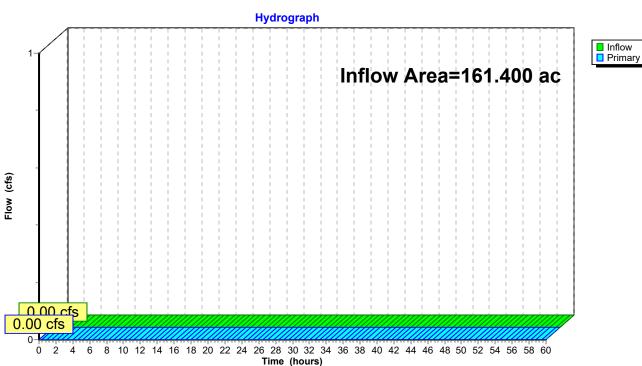
Volume	Inv	vert A	/ail.Storag	e Storag	ge Description	
#1	860	.00' 10	,041,783 (of Custo	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 860.0 862.3 863.0 864.0	et) 00 30 00	Surf.Are (sq-f 2,421,91 2,526,12 2,557,83 2,586,47	5 5 2 5 7 1	Inc.Store ubic-feet) 0 ,690,243 ,779,386 ,572,155	Cum.Store (cubic-feet) 0 5,690,243 7,469,628 10,041,783	
Device #1	Routing Primary		62.30' 1 2 H	ead (feet)	x 20.0' breadth 0.20 0.40 0.60	Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 .70 2.64 2.63 2.64 2.64 2.63


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=860.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

LOWAQC Peakflow_AJM

Prepared by Burns and McDonnell HydroCAD® 10.00-24 s/n 08510 © 2018 HydroCAD Software Solutions LLC

La Cygne LAQC IDF Type II 24-hr 100-YR Rainfall=8.55" Printed 9/1/2022


Pond P7:

Summary for Link Out:

Inflow Area	a =	161.400 ac, 18	8.30% Impervious,	Inflow Depth =	0.00"	for 100-YR event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af	
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs

Link Out:

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 **O** 816-333-9400 **F** 816-333-3690 www.burnsmcd.com